M. Riesz extension theorem

Last updated

The M. Riesz extension theorem is a theorem in mathematics, proved by Marcel Riesz [1] during his study of the problem of moments. [2]

Contents

Formulation

Let be a real vector space, be a vector subspace, and be a convex cone.

A linear functional is called -positive, if it takes only non-negative values on the cone :

A linear functional is called a -positive extension of , if it is identical to in the domain of , and also returns a value of at least 0 for all points in the cone :

In general, a -positive linear functional on cannot be extended to a -positive linear functional on . Already in two dimensions one obtains a counterexample. Let and be the -axis. The positive functional can not be extended to a positive functional on .

However, the extension exists under the additional assumption that namely for every there exists an such that

Proof

The proof is similar to the proof of the Hahn–Banach theorem (see also below).

By transfinite induction or Zorn's lemma it is sufficient to consider the case dim .

Choose any . Set

We will prove below that . For now, choose any satisfying , and set , , and then extend to all of by linearity. We need to show that is -positive. Suppose . Then either , or or for some and . If , then . In the first remaining case , and so

by definition. Thus

In the second case, , and so similarly

by definition and so

In all cases, , and so is -positive.

We now prove that . Notice by assumption there exists at least one for which , and so . However, it may be the case that there are no for which , in which case and the inequality is trivial (in this case notice that the third case above cannot happen). Therefore, we may assume that and there is at least one for which . To prove the inequality, it suffices to show that whenever and , and and , then . Indeed,

since is a convex cone, and so

since is -positive.

Corollary: Krein's extension theorem

Let E be a real linear space, and let K  E be a convex cone. Let x  E/(K) be such that R x + K = E. Then there exists a K-positive linear functional φ: E  R such that φ(x) > 0.

Connection to the HahnBanach theorem

The Hahn–Banach theorem can be deduced from the M. Riesz extension theorem.

Let V be a linear space, and let N be a sublinear function on V. Let φ be a functional on a subspace U  V that is dominated by N:

The HahnBanach theorem asserts that φ can be extended to a linear functional on V that is dominated by N.

To derive this from the M. Riesz extension theorem, define a convex cone K  R×V by

Define a functional φ1 on R×U by

One can see that φ1 is K-positive, and that K + (R × U) = R × V. Therefore φ1 can be extended to a K-positive functional ψ1 on R×V. Then

is the desired extension of φ. Indeed, if ψ(x) > N(x), we have: (N(x), x)  K, whereas

leading to a contradiction.

Related Research Articles

Bra–ket notation, also called Dirac notation, is a notation for linear algebra and linear operators on complex vector spaces together with their dual space both in the finite-dimensional and infinite-dimensional case. It is specifically designed to ease the types of calculations that frequently come up in quantum mechanics. Its use in quantum mechanics is quite widespread.

In mathematics, the prime number theorem (PNT) describes the asymptotic distribution of the prime numbers among the positive integers. It formalizes the intuitive idea that primes become less common as they become larger by precisely quantifying the rate at which this occurs. The theorem was proved independently by Jacques Hadamard and Charles Jean de la Vallée Poussin in 1896 using ideas introduced by Bernhard Riemann.

The Riesz representation theorem, sometimes called the Riesz–Fréchet representation theorem after Frigyes Riesz and Maurice René Fréchet, establishes an important connection between a Hilbert space and its continuous dual space. If the underlying field is the real numbers, the two are isometrically isomorphic; if the underlying field is the complex numbers, the two are isometrically anti-isomorphic. The (anti-) isomorphism is a particular natural isomorphism.

Distributions, also known as Schwartz distributions or generalized functions, are objects that generalize the classical notion of functions in mathematical analysis. Distributions make it possible to differentiate functions whose derivatives do not exist in the classical sense. In particular, any locally integrable function has a distributional derivative.

In mathematics, a self-adjoint operator on an infinite-dimensional complex vector space V with inner product is a linear map A that is its own adjoint. If V is finite-dimensional with a given orthonormal basis, this is equivalent to the condition that the matrix of A is a Hermitian matrix, i.e., equal to its conjugate transpose A. By the finite-dimensional spectral theorem, V has an orthonormal basis such that the matrix of A relative to this basis is a diagonal matrix with entries in the real numbers. This article deals with applying generalizations of this concept to operators on Hilbert spaces of arbitrary dimension.

In mathematics, specifically in operator theory, each linear operator on an inner product space defines a Hermitian adjoint operator on that space according to the rule

In mathematics, particularly in operator theory and C*-algebra theory, the continuous functional calculus is a functional calculus which allows the application of a continuous function to normal elements of a C*-algebra.

In mathematics and theoretical physics, a locally compact quantum group is a relatively new C*-algebraic approach toward quantum groups that generalizes the Kac algebra, compact-quantum-group and Hopf-algebra approaches. Earlier attempts at a unifying definition of quantum groups using, for example, multiplicative unitaries have enjoyed some success but have also encountered several technical problems.

In mathematics, the von Mangoldt function is an arithmetic function named after German mathematician Hans von Mangoldt. It is an example of an important arithmetic function that is neither multiplicative nor additive.

In functional analysis, a branch of mathematics, it is sometimes possible to generalize the notion of the determinant of a square matrix of finite order (representing a linear transformation from a finite-dimensional vector space to itself) to the infinite-dimensional case of a linear operator S mapping a function space V to itself. The corresponding quantity det(S) is called the functional determinant of S.

In mathematics, subharmonic and superharmonic functions are important classes of functions used extensively in partial differential equations, complex analysis and potential theory.

In mathematics, a dual wavelet is the dual to a wavelet. In general, the wavelet series generated by a square-integrable function will have a dual series, in the sense of the Riesz representation theorem. However, the dual series is not itself in general representable by a square-integrable function.

In mathematics, a first-order partial differential equation is a partial differential equation that involves only first derivatives of the unknown function of n variables. The equation takes the form

In mathematics, a Riesz space, lattice-ordered vector space or vector lattice is a partially ordered vector space where the order structure is a lattice.

In mathematics, the spectral theory of ordinary differential equations is the part of spectral theory concerned with the determination of the spectrum and eigenfunction expansion associated with a linear ordinary differential equation. In his dissertation, Hermann Weyl generalized the classical Sturm–Liouville theory on a finite closed interval to second order differential operators with singularities at the endpoints of the interval, possibly semi-infinite or infinite. Unlike the classical case, the spectrum may no longer consist of just a countable set of eigenvalues, but may also contain a continuous part. In this case the eigenfunction expansion involves an integral over the continuous part with respect to a spectral measure, given by the Titchmarsh–Kodaira formula. The theory was put in its final simplified form for singular differential equations of even degree by Kodaira and others, using von Neumann's spectral theorem. It has had important applications in quantum mechanics, operator theory and harmonic analysis on semisimple Lie groups.

In mathematical analysis, and especially in real, harmonic analysis and functional analysis, an Orlicz space is a type of function space which generalizes the Lp spaces. Like the Lp spaces, they are Banach spaces. The spaces are named for Władysław Orlicz, who was the first to define them in 1932.

Overcompleteness is a concept from linear algebra that is widely used in mathematics, computer science, engineering, and statistics. It was introduced by R. J. Duffin and A. C. Schaeffer in 1952.

In mathematics, the Riesz–Markov–Kakutani representation theorem relates linear functionals on spaces of continuous functions on a locally compact space to measures in measure theory. The theorem is named for Frigyes Riesz who introduced it for continuous functions on the unit interval, Andrey Markov who extended the result to some non-compact spaces, and Shizuo Kakutani who extended the result to compact Hausdorff spaces.

In geometry, a valuation is a finitely additive function from a collection of subsets of a set to an abelian semigroup. For example, Lebesgue measure is a valuation on finite unions of convex bodies of Other examples of valuations on finite unions of convex bodies of are surface area, mean width, and Euler characteristic.

In mathematical analysis, the spaces of test functions and distributions are topological vector spaces (TVSs) that are used in the definition and application of distributions. Test functions are usually infinitely differentiable complex-valued functions on a non-empty open subset that have compact support. The space of all test functions, denoted by is endowed with a certain topology, called the canonical LF-topology, that makes into a complete Hausdorff locally convex TVS. The strong dual space of is called the space of distributions on and is denoted by where the "" subscript indicates that the continuous dual space of denoted by is endowed with the strong dual topology.

References

Sources