Bochner space

Last updated

In mathematics, Bochner spaces are a generalization of the concept of spaces to functions whose values lie in a Banach space which is not necessarily the space or of real or complex numbers.

Contents

The space consists of (equivalence classes of) all Bochner measurable functions with values in the Banach space whose norm lies in the standard space. Thus, if is the set of complex numbers, it is the standard Lebesgue space.

Almost all standard results on spaces do hold on Bochner spaces too; in particular, the Bochner spaces are Banach spaces for

Bochner spaces are named for the mathematician Salomon Bochner.

Definition

Given a measure space a Banach space and the Bochner space is defined to be the Kolmogorov quotient (by equality almost everywhere) of the space of all Bochner measurable functions such that the corresponding norm is finite:

In other words, as is usual in the study of spaces, is a space of equivalence classes of functions, where two functions are defined to be equivalent if they are equal everywhere except upon a -measure zero subset of As is also usual in the study of such spaces, it is usual to abuse notation and speak of a "function" in rather than an equivalence class (which would be more technically correct).

Applications

Bochner spaces are often used in the functional analysis approach to the study of partial differential equations that depend on time, e.g. the heat equation: if the temperature is a scalar function of time and space, one can write to make a family (parametrized by time) of functions of space, possibly in some Bochner space.

Application to PDE theory

Very often, the space is an interval of time over which we wish to solve some partial differential equation, and will be one-dimensional Lebesgue measure. The idea is to regard a function of time and space as a collection of functions of space, this collection being parametrized by time. For example, in the solution of the heat equation on a region in and an interval of time one seeks solutions

with time derivative

Here denotes the Sobolev Hilbert space of once-weakly differentiable functions with first weak derivative in that vanish at the boundary of Ω (in the sense of trace, or, equivalently, are limits of smooth functions with compact support in Ω); denotes the dual space of

(The "partial derivative" with respect to time above is actually a total derivative, since the use of Bochner spaces removes the space-dependence.)

See also

Related Research Articles

<span class="mw-page-title-main">Functional analysis</span> Area of mathematics

Functional analysis is a branch of mathematical analysis, the core of which is formed by the study of vector spaces endowed with some kind of limit-related structure and the linear functions defined on these spaces and respecting these structures in a suitable sense. The historical roots of functional analysis lie in the study of spaces of functions and the formulation of properties of transformations of functions such as the Fourier transform as transformations defining, for example, continuous or unitary operators between function spaces. This point of view turned out to be particularly useful for the study of differential and integral equations.

In mathematics, the Lp spaces are function spaces defined using a natural generalization of the p-norm for finite-dimensional vector spaces. They are sometimes called Lebesgue spaces, named after Henri Lebesgue, although according to the Bourbaki group they were first introduced by Frigyes Riesz.

In mathematical analysis, a function of bounded variation, also known as BV function, is a real-valued function whose total variation is bounded (finite): the graph of a function having this property is well behaved in a precise sense. For a continuous function of a single variable, being of bounded variation means that the distance along the direction of the y-axis, neglecting the contribution of motion along x-axis, traveled by a point moving along the graph has a finite value. For a continuous function of several variables, the meaning of the definition is the same, except for the fact that the continuous path to be considered cannot be the whole graph of the given function, but can be every intersection of the graph itself with a hyperplane parallel to a fixed x-axis and to the y-axis.

In measure theory, Lebesgue's dominated convergence theorem provides sufficient conditions under which almost everywhere convergence of a sequence of functions implies convergence in the L1 norm. Its power and utility are two of the primary theoretical advantages of Lebesgue integration over Riemann integration.

In probability theory, the conditional expectation, conditional expected value, or conditional mean of a random variable is its expected value – the value it would take “on average” over an arbitrarily large number of occurrences – given that a certain set of "conditions" is known to occur. If the random variable can take on only a finite number of values, the “conditions” are that the variable can only take on a subset of those values. More formally, in the case when the random variable is defined over a discrete probability space, the "conditions" are a partition of this probability space.

In mathematics, a Sobolev space is a vector space of functions equipped with a norm that is a combination of Lp-norms of the function together with its derivatives up to a given order. The derivatives are understood in a suitable weak sense to make the space complete, i.e. a Banach space. Intuitively, a Sobolev space is a space of functions possessing sufficiently many derivatives for some application domain, such as partial differential equations, and equipped with a norm that measures both the size and regularity of a function.

In mathematics, the total variation identifies several slightly different concepts, related to the (local or global) structure of the codomain of a function or a measure. For a real-valued continuous function f, defined on an interval [a, b] ⊂ R, its total variation on the interval of definition is a measure of the one-dimensional arclength of the curve with parametric equation xf(x), for x ∈ [a, b]. Functions whose total variation is finite are called functions of bounded variation.

In mathematics, the Riesz–Fischer theorem in real analysis is any of a number of closely related results concerning the properties of the space L2 of square integrable functions. The theorem was proven independently in 1907 by Frigyes Riesz and Ernst Sigismund Fischer.

In mathematics, a change of variables is a basic technique used to simplify problems in which the original variables are replaced with functions of other variables. The intent is that when expressed in new variables, the problem may become simpler, or equivalent to a better understood problem.

In mathematics, the Bochner integral, named for Salomon Bochner, extends the definition of Lebesgue integral to functions that take values in a Banach space, as the limit of integrals of simple functions.

In mathematics, a real or complex-valued function f on d-dimensional Euclidean space satisfies a Hölder condition, or is Hölder continuous, when there are real constants C ≥ 0, α > 0, such that

In mathematics, a vector measure is a function defined on a family of sets and taking vector values satisfying certain properties. It is a generalization of the concept of finite measure, which takes nonnegative real values only.

In mathematics, the trace operator extends the notion of the restriction of a function to the boundary of its domain to "generalized" functions in a Sobolev space. This is particularly important for the study of partial differential equations with prescribed boundary conditions, where weak solutions may not be regular enough to satisfy the boundary conditions in the classical sense of functions.

In mathematics—specifically, in functional analysis—a weakly measurable function taking values in a Banach space is a function whose composition with any element of the dual space is a measurable function in the usual (strong) sense. For separable spaces, the notions of weak and strong measurability agree.

In mathematics, the Pettis integral or Gelfand–Pettis integral, named after Israel M. Gelfand and Billy James Pettis, extends the definition of the Lebesgue integral to vector-valued functions on a measure space, by exploiting duality. The integral was introduced by Gelfand for the case when the measure space is an interval with Lebesgue measure. The integral is also called the weak integral in contrast to the Bochner integral, which is the strong integral.

In mathematics, especially measure theory, a set function is a function whose domain is a family of subsets of some given set and that (usually) takes its values in the extended real number line which consists of the real numbers and

In mathematics – specifically, in functional analysis – a Bochner-measurable function taking values in a Banach space is a function that equals almost everywhere the limit of a sequence of measurable countably-valued functions, i.e.,

In mathematics, the Beltrami equation, named after Eugenio Beltrami, is the partial differential equation

In mathematics, there are two different notions of semi-inner-product. The first, and more common, is that of an inner product which is not required to be strictly positive. This article will deal with the second, called a L-semi-inner product or semi-inner product in the sense of Lumer, which is an inner product not required to be conjugate symmetric. It was formulated by Günter Lumer, for the purpose of extending Hilbert space type arguments to Banach spaces in functional analysis. Fundamental properties were later explored by Giles.

In mathematics, the symmetric decreasing rearrangement of a function is a function which is symmetric and decreasing, and whose level sets are of the same size as those of the original function.

References