The identity of indiscernibles is an ontological principle that states that there cannot be separate objects or entities that have all their properties in common. That is, entities x and y are identical if every predicate possessed by x is also possessed by y and vice versa. It states that no two distinct things (such as snowflakes) can be exactly alike, but this is intended as a metaphysical principle rather than one of natural science. A related principle is the indiscernibility of identicals, discussed below.
A form of the principle is attributed to the German philosopher Gottfried Wilhelm Leibniz. While some think that Leibniz's version of the principle is meant to be only the indiscernibility of identicals, others have interpreted it as the conjunction of the identity of indiscernibles and the indiscernibility of identicals (the converse principle). Because of its association with Leibniz, the indiscernibility of identicals is sometimes known as Leibniz's law. It is considered to be one of his great metaphysical principles, the other being the principle of noncontradiction and the principle of sufficient reason (famously used in his disputes with Newton and Clarke in the Leibniz–Clarke correspondence).
Some philosophers have decided, however, that it is important to exclude certain predicates (or purported predicates) from the principle in order to avoid either triviality or contradiction. An example (detailed below) is the predicate that denotes whether an object is equal to x (often considered a valid predicate). As a consequence, there are a few different versions of the principle in the philosophical literature, of varying logical strength—and some of them are termed "the strong principle" or "the weak principle" by particular authors, in order to distinguish between them. [1]
The identity of indiscernibles has been used to motivate notions of noncontextuality within quantum mechanics.
Associated with this principle is also the question as to whether it is a logical principle, or merely an empirical principle.
Both identity and indiscernibility are expressed by the word "same". [2] [3] Identity is about numerical sameness, and is expressed by the equality sign ("="). It is the relation each object bears only to itself. [4] Indiscernibility, on the other hand, concerns qualitative sameness: two objects are indiscernible if they have all their properties in common. [1] Formally, this can be expressed as "". The two senses of sameness are linked by two principles: the principle of indiscernibility of identicals and the principle of identity of indiscernibles. The principle of indiscernibility of identicals is uncontroversial and states that if two entities are identical with each other then they have the same properties. [3] The principle of identity of indiscernibles, on the other hand, is more controversial in making the converse claim that if two entities have the same properties then they must be identical. [3] This entails that "no two distinct things exactly resemble each other". [1] Note that these are all second-order expressions. Neither of these principles can be expressed in first-order logic (are nonfirstorderizable). Taken together, they are sometimes referred to as Leibniz's law. Formally, the two principles can be expressed in the following way:
Principle 1 is generally regarded as an a priori logical truth. [1] Principle 2, on the other hand, is controversial; Max Black famously argued against it. [5]
In a universe of two distinct objects A and B, all predicates F are materially equivalent to one of the following properties:
If ∀F applies to all such predicates, then the second principle as formulated above reduces trivially and uncontroversially to a logical tautology. In that case, the objects are distinguished by IsA, IsB, and all predicates that are materially equivalent to either of these. This argument can combinatorially be extended to universes containing any number of distinct objects.
Proof box | |||||||||||||||||||||||||
| |||||||||||||||||||||||||
| |||||||||||||||||||||||||
| |||||||||||||||||||||||||
| |||||||||||||||||||||||||
|
The equality relation expressed by the sign "=" is an equivalence relation in being reflexive (everything is equal to itself), symmetric (if x is equal to y then y is equal to x) and transitive (if x is equal to y and y is equal to z then x is equal to z). The indiscernibility of identicals and identity of indiscernables can jointly be used to define the equality relation. The symmetry and transitivity of equality follow from the first principle, whereas reflexivity follows from the second. Both principles can be combined into a single axiom by using a biconditional operator () in place of material implication (). [6] [ citation needed ]
Indiscernibility is usually defined in terms of shared properties: two objects are indiscernible if they have all their properties in common. [7] The plausibility and strength of the principle of identity of indiscernibles depend on the conception of properties used to define indiscernibility. [7] [8]
One important distinction in this regard is between pure and impure properties. Impure properties are properties that, unlike pure properties, involve reference to a particular substance in their definition. [7] So, for example, being a wife is a pure property while being the wife of Socrates is an impure property due to the reference to the particular "Socrates". [9] Sometimes, the terms qualitative and non-qualitative are used instead of pure and impure. [10] Discernibility is usually defined in terms of pure properties only. The reason for this is that taking impure properties into consideration would result in the principle being trivially true since any entity has the impure property of being identical to itself, which it does not share with any other entity. [7] [8]
Another important distinction concerns the difference between intrinsic and extrinsic properties. [8] A property is extrinsic to an object if having this property depends on other objects (with or without reference to particular objects), otherwise it is intrinsic. For example, the property of being an aunt is extrinsic while the property of having a mass of 60 kg is intrinsic. [11] [12] If the identity of indiscernibles is defined only in terms of intrinsic pure properties, one cannot regard two books lying on a table as distinct when they are intrinsically identical. But if extrinsic and impure properties are also taken into consideration, the same books become distinct so long as they are discernible through the latter properties. [7] [8]
Max Black has argued against the identity of indiscernibles by counterexample. Notice that to show that the identity of indiscernibles is false, it is sufficient that one provide a model in which there are two distinct (numerically nonidentical) things that have all the same properties. He claimed that in a symmetric universe wherein only two symmetrical spheres exist, the two spheres are two distinct objects even though they have all their properties in common. [13]
Black argues that even relational properties (properties specifying distances between objects in space-time) fail to distinguish two identical objects in a symmetrical universe. Per his argument, two objects are, and will remain, equidistant from the universe's plane of symmetry and each other. Even bringing in an external observer to label the two spheres distinctly does not solve the problem, because it violates the symmetry of the universe.
As stated above, the principle of indiscernibility of identicals—that if two objects are in fact one and the same, they have all the same properties—is mostly uncontroversial. However, one famous application of the indiscernibility of identicals was by René Descartes in his Meditations on First Philosophy . Descartes concluded that he could not doubt the existence of himself (the famous cogito argument), but that he could doubt the existence of his body.
This argument is criticized by some modern philosophers on the grounds that it allegedly derives a conclusion about what is true from a premise about what people know. What people know or believe about an entity, they argue, is not really a characteristic of that entity. A response may be that the argument in the Meditations on First Philosophy is that the inability of Descartes to doubt the existence of his mind is part of his mind's essence. One may then argue that identical things should have identical essences. [14]
Numerous counterexamples are given to debunk Descartes' reasoning via reductio ad absurdum , such as the following argument based on a secret identity:
In analytic philosophy, anti-realism is the position that the truth of a statement rests on its demonstrability through internal logic mechanisms, such as the context principle or intuitionistic logic, in direct opposition to the realist notion that the truth of a statement rests on its correspondence to an external, independent reality. In anti-realism, this external reality is hypothetical and is not assumed.
Existence is the state of having being or reality in contrast to nonexistence and nonbeing. Existence is often contrasted with essence: the essence of an entity is its essential features or qualities, which can be understood even if one does not know whether the entity exists.
First-order logic—also called predicate logic, predicate calculus, quantificational logic—is a collection of formal systems used in mathematics, philosophy, linguistics, and computer science. First-order logic uses quantified variables over non-logical objects, and allows the use of sentences that contain variables. Rather than propositions such as "all men are mortal", in first-order logic one can have expressions in the form "for all x, if x is a man, then x is mortal"; where "for all x" is a quantifier, x is a variable, and "... is a man" and "... is mortal" are predicates. This distinguishes it from propositional logic, which does not use quantifiers or relations; in this sense, propositional logic is the foundation of first-order logic.
Substance theory, or substance–attribute theory, is an ontological theory positing that objects are constituted each by a substance and properties borne by the substance but distinct from it. In this role, a substance can be referred to as a substratum or a thing-in-itself. Substances are particulars that are ontologically independent: they are able to exist all by themselves. Another defining feature often attributed to substances is their ability to undergo changes. Changes involve something existing before, during and after the change. They can be described in terms of a persisting substance gaining or losing properties. Attributes or properties, on the other hand, are entities that can be exemplified by substances. Properties characterize their bearers; they express what their bearer is like.
In metaphysics, identity is the relation each thing bears only to itself. The notion of identity gives rise to many philosophical problems, including the identity of indiscernibles, and questions about change and personal identity over time. It is important to distinguish between qualitative identity and numerical identity. For example, consider two children with identical bicycles engaged in a race while their mother is watching. The two children have the same bicycle in one sense and the same mother in another sense. This article is mainly concerned with numerical identity, which is the stricter notion.
In mathematics, equality is a relationship between two quantities or, more generally, two mathematical expressions, asserting that the quantities have the same value, or that the expressions represent the same mathematical object. Equality between A and B is written A = B, and pronounced "A equals B". In this equality, A and B are the members of the equality and are distinguished by calling them left-hand side or left member, and right-hand side or right member. Two objects that are not equal are said to be distinct.
In classical theistic and monotheistic theology, the doctrine of divine simplicity says that God is simple . God exists as one unified entity, with no distinct attributes; God's existence is identical to God's essence.
In logic, extensionality, or extensional equality, refers to principles that judge objects to be equal if they have the same external properties. It stands in contrast to the concept of intensionality, which is concerned with whether the internal definitions of objects are the same.
Understood in a narrow sense, philosophical logic is the area of logic that studies the application of logical methods to philosophical problems, often in the form of extended logical systems like modal logic. Some theorists conceive philosophical logic in a wider sense as the study of the scope and nature of logic in general. In this sense, philosophical logic can be seen as identical to the philosophy of logic, which includes additional topics like how to define logic or a discussion of the fundamental concepts of logic. The current article treats philosophical logic in the narrow sense, in which it forms one field of inquiry within the philosophy of logic.
In philosophy, supervenience refers to a relation between sets of properties or sets of facts. X is said to supervene on Y if and only if some difference in Y is necessary for any difference in X to be possible.
Mereology is the philosophical study of part-whole relationships, also called parthood relationships. As a branch of metaphysics, mereology examines the connections between parts and their wholes, exploring how components interact within a system. This theory has roots in ancient philosophy, with significant contributions from Plato, Aristotle, and later, medieval and Renaissance thinkers like Thomas Aquinas and John Duns Scotus. Mereology gained formal recognition in the 20th century through the pioneering works of Polish logician Stanisław Leśniewski, who introduced it as part of a comprehensive framework for logic and mathematics, and coined the word "mereology". The field has since evolved to encompass a variety of applications in ontology, natural language semantics, and the cognitive sciences, influencing our understanding of structures ranging from linguistic constructs to biological systems.
In logic and philosophy, a property is a characteristic of an object; a red object is said to have the property of redness. The property may be considered a form of object in its own right, able to possess other properties. A property, however, differs from individual objects in that it may be instantiated, and often in more than one object. It differs from the logical/mathematical concept of class by not having any concept of extensionality, and from the philosophical concept of class in that a property is considered to be distinct from the objects which possess it. Understanding how different individual entities can in some sense have some of the same properties is the basis of the problem of universals.
Begriffsschrift is a book on logic by Gottlob Frege, published in 1879, and the formal system set out in that book.
A free logic is a logic with fewer existential presuppositions than classical logic. Free logics may allow for terms that do not denote any object. Free logics may also allow models that have an empty domain. A free logic with the latter property is an inclusive logic.
In philosophical logic, the masked-man fallacy is committed when one makes an illicit use of Leibniz's law in an argument. Leibniz's law states that if A and B are the same object, then A and B are indiscernible. By modus tollens, this means that if one object has a certain property, while another object does not have the same property, the two objects cannot be identical. The fallacy is "epistemic" because it posits an immediate identity between a subject's knowledge of an object with the object itself, failing to recognize that Leibniz's Law is not capable of accounting for intensional contexts.
In philosophy, specifically in the area of metaphysics, counterpart theory is an alternative to standard (Kripkean) possible-worlds semantics for interpreting quantified modal logic. Counterpart theory still presupposes possible worlds, but differs in certain important respects from the Kripkean view. The form of the theory most commonly cited was developed by David Lewis, first in a paper and later in his book On the Plurality of Worlds.
Haecceitism is a philosophical concept that stems from the field of metaphysics, particularly dealing with the nature of individuality and identity. The term "haecceity" itself comes from the Latin word "haecceitas," which means "thisness." This concept was originally developed in the medieval scholastic philosophy and is often associated with the philosopher Duns Scotus.
In modal logic, the necessity of identity is the thesis that for every object x and object y, if x and y are the same object, it is necessary that x and y are the same object. The thesis is best known for its association with Saul Kripke, who published it in 1971, although it was first derived by the logician Ruth Barcan Marcus in 1947, and later, in simplified form, by W. V. O. Quine in 1953.
In philosophy, similarity or resemblance is a relation between objects that constitutes how much these objects are alike. Similarity comes in degrees: e.g. oranges are more similar to apples than to the moon. It is traditionally seen as an internal relation and analyzed in terms of shared properties: two things are similar because they have a property in common. The more properties they share, the more similar they are. They resemble each other exactly if they share all their properties. So an orange is similar to the moon because they both share the property of being round, but it is even more similar to an apple because additionally, they both share various other properties, like the property of being a fruit. On a formal level, similarity is usually considered to be a relation that is reflexive (everything resembles itself), symmetric (if a is similar to b then b is similar to a) and non-transitive (a need not resemble c despite a resembling b and b resembling c). Similarity comes in two forms: respective similarity, which is relative to one respect or feature, and overall similarity, which expresses the degree of resemblance between two objects all things considered. There is no general consensus whether similarity is an objective, mind-independent feature of reality, and, if so, whether it is a fundamental feature or reducible to other features. Resemblance is central to human cognition since it provides the basis for the categorization of entities into kinds and for various other cognitive processes like analogical reasoning. Similarity has played a central role in various philosophical theories, e.g. as a solution to the problem of universals through resemblance nominalism or in the analysis of counterfactuals in terms of similarity between possible worlds.
This is a glossary of mereology. Mereology is the philosophical study of part-whole relationships, also called parthood relationships.