Multiscale modeling

Last updated
Modeling approaches and their scales Holec2016P40.svg
Modeling approaches and their scales

Multiscale modeling or multiscale mathematics is the field of solving problems that have important features at multiple scales of time and/or space. Important problems include multiscale modeling of fluids, [1] [2] [3] solids, [2] [4] polymers, [5] [6] proteins, [7] [8] [9] [10] nucleic acids [11] as well as various physical and chemical phenomena (like adsorption, chemical reactions, diffusion). [9] [12] [13] [14]

Contents

An example of such problems involve the Navier–Stokes equations for incompressible fluid flow.

In a wide variety of applications, the stress tensor is given as a linear function of the gradient . Such a choice for has been proven to be sufficient for describing the dynamics of a broad range of fluids. However, its use for more complex fluids such as polymers is dubious. In such a case, it may be necessary to use multiscale modeling to accurately model the system such that the stress tensor can be extracted without requiring the computational cost of a full microscale simulation. [15]

History

Horstemeyer 2009, [16] 2012 [17] presented a historical review of the different disciplines (mathematics, physics, and materials science) for solid materials related to multiscale materials modeling.

The recent surge of multiscale modeling from the smallest scale (atoms) to full system level (e.g., autos) related to solid mechanics that has now grown into an international multidisciplinary activity was birthed from an unlikely source. Since the US Department of Energy (DOE) national labs started to reduce nuclear underground tests in the mid-1980s, with the last one in 1992, the idea of simulation-based design and analysis concepts were birthed. Multiscale modeling was a key in garnering more precise and accurate predictive tools. In essence, the number of large-scale systems level tests that were previously used to validate a design was reduced to nothing, thus warranting the increase in simulation results of the complex systems for design verification and validation purposes.

Essentially, the idea of filling the space of system-level “tests” was then proposed to be filled by simulation results. After the Comprehensive Test Ban Treaty of 1996 in which many countries pledged to discontinue all systems-level nuclear testing, programs like the Advanced Strategic Computing Initiative (ASCI) were birthed within the Department of Energy (DOE) and managed by the national labs within the US. Within ASCI, the basic recognized premise was to provide more accurate and precise simulation-based design and analysis tools. Because of the requirements for greater complexity in the simulations, parallel computing and multiscale modeling became the major challenges that needed to be addressed. With this perspective, the idea of experiments shifted from the large-scale complex tests to multiscale experiments that provided material models with validation at different length scales. If the modeling and simulations were physically based and less empirical, then a predictive capability could be realized for other conditions. As such, various multiscale modeling methodologies were independently being created at the DOE national labs: Los Alamos National Lab (LANL), Lawrence Livermore National Laboratory (LLNL), Sandia National Laboratories (SNL), and Oak Ridge National Laboratory (ORNL). In addition, personnel from these national labs encouraged, funded, and managed academic research related to multiscale modeling. Hence, the creation of different methodologies and computational algorithms for parallel environments gave rise to different emphases regarding multiscale modeling and the associated multiscale experiments.

The advent of parallel computing also contributed to the development of multiscale modeling. Since more degrees of freedom could be resolved by parallel computing environments, more accurate and precise algorithmic formulations could be admitted. This thought also drove the political leaders to encourage the simulation-based design concepts.

At LANL, LLNL, and ORNL, the multiscale modeling efforts were driven from the materials science and physics communities with a bottom-up approach. Each had different programs that tried to unify computational efforts, materials science information, and applied mechanics algorithms with different levels of success. Multiple scientific articles were written, and the multiscale activities took different lives of their own. At SNL, the multiscale modeling effort was an engineering top-down approach starting from continuum mechanics perspective, which was already rich with a computational paradigm. SNL tried to merge the materials science community into the continuum mechanics community to address the lower-length scale issues that could help solve engineering problems in practice.

Once this management infrastructure and associated funding was in place at the various DOE institutions, different academic research projects started, initiating various satellite networks of multiscale modeling research. Technological transfer also arose into other labs within the Department of Defense and industrial research communities.

The growth of multiscale modeling in the industrial sector was primarily due to financial motivations. From the DOE national labs perspective, the shift from large-scale systems experiments mentality occurred because of the 1996 Nuclear Ban Treaty. Once industry realized that the notions of multiscale modeling and simulation-based design were invariant to the type of product and that effective multiscale simulations could in fact lead to design optimization, a paradigm shift began to occur, in various measures within different industries, as cost savings and accuracy in product warranty estimates were rationalized.

Mark Horstemeyer,Integrated Computational Materials Engineering (ICME) for Metals, Chapter 1, Section 1.3.

The aforementioned DOE multiscale modeling efforts were hierarchical in nature. The first concurrent multiscale model occurred when Michael Ortiz (Caltech) took the molecular dynamics code Dynamo, developed by Mike Baskes at Sandia National Labs, and with his students embedded it into a finite element code for the first time. [18] Martin Karplus, Michael Levitt, and Arieh Warshel received the Nobel Prize in Chemistry in 2013 for the development of a multiscale model method using both classical and quantum mechanical theory which were used to model large complex chemical systems and reactions. [8] [9] [10]

Areas of research

In physics and chemistry, multiscale modeling is aimed at the calculation of material properties or system behavior on one level using information or models from different levels. On each level, particular approaches are used for the description of a system. The following levels are usually distinguished: level of quantum mechanical models (information about electrons is included), level of molecular dynamics models (information about individual atoms is included), coarse-grained models (information about atoms and/or groups of atoms is included), mesoscale or nano-level (information about large groups of atoms and/or molecule positions is included), level of continuum models, level of device models. Each level addresses a phenomenon over a specific window of length and time. Multiscale modeling is particularly important in integrated computational materials engineering since it allows the prediction of material properties or system behavior based on knowledge of the process-structure-property relationships.[ citation needed ]

In operations research, multiscale modeling addresses challenges for decision-makers that come from multiscale phenomena across organizational, temporal, and spatial scales. This theory fuses decision theory and multiscale mathematics and is referred to as multiscale decision-making. Multiscale decision-making draws upon the analogies between physical systems and complex man-made systems.[ citation needed ]

In meteorology, multiscale modeling is the modeling of the interaction between weather systems of different spatial and temporal scales that produces the weather that we experience. The most challenging task is to model the way through which the weather systems interact as models cannot see beyond the limit of the model grid size. In other words, to run an atmospheric model that is having a grid size (very small ~ 500 m) which can see each possible cloud structure for the whole globe is computationally very expensive. On the other hand, a computationally feasible Global climate model (GCM), with grid size ~ 100 km, cannot see the smaller cloud systems. So we need to come to a balance point so that the model becomes computationally feasible and at the same time we do not lose much information, with the help of making some rational guesses, a process called parametrization.[ citation needed ]

Besides the many specific applications, one area of research is methods for the accurate and efficient solution of multiscale modeling problems. The primary areas of mathematical and algorithmic development include:

See also

Related Research Articles

Continuum mechanics is a branch of mechanics that deals with the deformation of and transmission of forces through materials modeled as a continuous medium rather than as discrete particles. The French mathematician Augustin-Louis Cauchy was the first to formulate such models in the 19th century.

<span class="mw-page-title-main">Fluid dynamics</span> Aspects of fluid mechanics involving flow

In physics, physical chemistry and engineering, fluid dynamics is a subdiscipline of fluid mechanics that describes the flow of fluids—liquids and gases. It has several subdisciplines, including aerodynamics and hydrodynamics. Fluid dynamics has a wide range of applications, including calculating forces and moments on aircraft, determining the mass flow rate of petroleum through pipelines, predicting weather patterns, understanding nebulae in interstellar space and modelling fission weapon detonation.

Density functional theory (DFT) is a computational quantum mechanical modelling method used in physics, chemistry and materials science to investigate the electronic structure of many-body systems, in particular atoms, molecules, and the condensed phases. Using this theory, the properties of a many-electron system can be determined by using functionals, i.e. functions of another function. In the case of DFT, these are functionals of the spatially dependent electron density. DFT is among the most popular and versatile methods available in condensed-matter physics, computational physics, and computational chemistry.

In materials science and continuum mechanics, viscoelasticity is the property of materials that exhibit both viscous and elastic characteristics when undergoing deformation. Viscous materials, like water, resist shear flow and strain linearly with time when a stress is applied. Elastic materials strain when stretched and immediately return to their original state once the stress is removed.

<span class="mw-page-title-main">Molecular modelling</span> Discovering chemical properties by physical simulations

Molecular modelling encompasses all methods, theoretical and computational, used to model or mimic the behaviour of molecules. The methods are used in the fields of computational chemistry, drug design, computational biology and materials science to study molecular systems ranging from small chemical systems to large biological molecules and material assemblies. The simplest calculations can be performed by hand, but inevitably computers are required to perform molecular modelling of any reasonably sized system. The common feature of molecular modelling methods is the atomistic level description of the molecular systems. This may include treating atoms as the smallest individual unit, or explicitly modelling protons and neutrons with its quarks, anti-quarks and gluons and electrons with its photons.

<span class="mw-page-title-main">Smoothed-particle hydrodynamics</span> Method of hydrodynamics simulation

Smoothed-particle hydrodynamics (SPH) is a computational method used for simulating the mechanics of continuum media, such as solid mechanics and fluid flows. It was developed by Gingold and Monaghan and Lucy in 1977, initially for astrophysical problems. It has been used in many fields of research, including astrophysics, ballistics, volcanology, and oceanography. It is a meshfree Lagrangian method, and the resolution of the method can easily be adjusted with respect to variables such as density.

<span class="mw-page-title-main">Peter Coveney</span> British chemist

Peter V. Coveney is a British chemist who is Professor of Physical Chemistry, Honorary Professor of Computer Science, and the Director of the Centre for Computational Science (CCS) and Associate Director of the Advanced Research Computing Centre at University College London (UCL). He is also a Professor of Applied High Performance Computing at University of Amsterdam (UvA) and Professor Adjunct at the Yale School of Medicine, Yale University. He is a Fellow of the Royal Academy of Engineering and Member of Academia Europaea. Coveney is active in a broad area of interdisciplinary research including condensed matter physics and chemistry, materials science, as well as life and medical sciences in all of which high performance computing plays a major role. The citation about Coveney on his election as a FREng says: Coveney "has made outstanding contributions across a wide range of scientific and engineering fields, including physics, chemistry, chemical engineering, materials, computer science, high performance computing and biomedicine, much of it harnessing the power of supercomputing to conduct original research at unprecedented space and time scales. He has shown outstanding leadership across these fields, manifested through running multiple initiatives and multi-partner interdisciplinary grants, in the UK, Europe and the US. His achievements at national and international level in advocacy and enablement are exceptional".

Fluid mechanics is the branch of physics concerned with the mechanics of fluids and the forces on them. It has applications in a wide range of disciplines, including mechanical, aerospace, civil, chemical, and biomedical engineering, as well as geophysics, oceanography, meteorology, astrophysics, and biology.

<span class="mw-page-title-main">Multiphysics simulation</span>

In computational modelling, multiphysics simulation is defined as the simultaneous simulation of different aspects of a physical system or systems and the interactions among them. For example, simultaneous simulation of the physical stress on an object, the temperature distribution of the object and the thermal expansion which leads to the variation of the stress and temperature distributions would be considered a multiphysics simulation. Multiphysics simulation is related to multiscale simulation, which is the simultaneous simulation of a single process on either multiple time or distance scales.

This is an alphabetical list of articles pertaining specifically to Engineering Science and Mechanics (ESM). For a broad overview of engineering, please see Engineering. For biographies please see List of engineers and Mechanicians.

Integrated Computational Materials Engineering (ICME) is an approach to design products, the materials that comprise them, and their associated materials processing methods by linking materials models at multiple length scales. Key words are "Integrated", involving integrating models at multiple length scales, and "Engineering", signifying industrial utility. The focus is on the materials, i.e. understanding how processes produce material structures, how those structures give rise to material properties, and how to select materials for a given application. The key links are process-structures-properties-performance. The National Academies report describes the need for using multiscale materials modeling to capture the process-structures-properties-performance of a material.

A phase-field model is a mathematical model for solving interfacial problems. It has mainly been applied to solidification dynamics, but it has also been applied to other situations such as viscous fingering, fracture mechanics, hydrogen embrittlement, and vesicle dynamics.

<span class="mw-page-title-main">Reynolds number</span> Ratio of inertial to viscous forces acting on a liquid

In fluid dynamics, the Reynolds number is a dimensionless quantity that helps predict fluid flow patterns in different situations by measuring the ratio between inertial and viscous forces. At low Reynolds numbers, flows tend to be dominated by laminar (sheet-like) flow, while at high Reynolds numbers, flows tend to be turbulent. The turbulence results from differences in the fluid's speed and direction, which may sometimes intersect or even move counter to the overall direction of the flow. These eddy currents begin to churn the flow, using up energy in the process, which for liquids increases the chances of cavitation.

<span class="mw-page-title-main">MOOSE (software)</span> Finite element framework software

MOOSE is an object-oriented C++ finite element framework for the development of tightly coupled multiphysics solvers from Idaho National Laboratory. MOOSE makes use of the PETSc non-linear solver package and libmesh to provide the finite element discretization.

Mark F. Horstemeyer is the Dean of the School of Engineering at Liberty University. He was the Giles Distinguished Professor at Mississippi State University (MSU) and professor in the Mechanical Engineering Department at Mississippi State University (2002–2018), holding a Chair position for the Center for Advanced Vehicular Systems (CAVS) in Computational Solid Mechanics; he was also the Chief Technical Officer for CAVS. Before coming to MSU, he worked for Sandia National Laboratories for fifteen years (1987-2002) in the area of multiscale modeling for design.

<span class="mw-page-title-main">FEATool Multiphysics</span>

FEATool Multiphysics is a physics, finite element analysis (FEA), and partial differential equation (PDE) simulation toolbox. FEATool Multiphysics features the ability to model fully coupled heat transfer, fluid dynamics, chemical engineering, structural mechanics, fluid-structure interaction (FSI), electromagnetics, as well as user-defined and custom PDE problems in 1D, 2D (axisymmetry), or 3D, all within a graphical user interface (GUI) or optionally as script files. FEATool has been employed and used in academic research, teaching, and industrial engineering simulation contexts.

Computational materials science and engineering uses modeling, simulation, theory, and informatics to understand materials. The main goals include discovering new materials, determining material behavior and mechanisms, explaining experiments, and exploring materials theories. It is analogous to computational chemistry and computational biology as an increasingly important subfield of materials science.

<span class="mw-page-title-main">Somnath Ghosh</span> Professor at Johns Hopkins University

Somnath Ghosh is the Michael G. Callas Chair Professor in the Department of Civil & Systems Engineering and a Professor of Mechanical Engineering and Materials Science & Engineering at Johns Hopkins University (JHU). He is the founding director of the JHU Center for Integrated Structure-Materials Modeling and Simulation (CISMMS) and was the director of an Air Force Center of Excellence in Integrated Materials Modeling (CEIMM). Prior to his appointment at JHU, Ghosh was the John B. Nordholt Professor of Mechanical Engineering and Materials Science & Engineering at Ohio State University. He is a fellow of several professional societies, including the American Association for the Advancement of Science (AAAS).

Gregory M. Odegard is a materials researcher and academic. He is the John O. Hallquist Endowed Chair in Computational Mechanics in the Department of Mechanical Engineering – Engineering Mechanics at Michigan Technological University and the director of the NASA Institute for Ultra-Strong Composites by Computational Design.

References

  1. Chen, Shiyi; Doolen, Gary D. (1998-01-01). "Lattice Boltzmann Method for Fluid Flows". Annual Review of Fluid Mechanics. 30 (1): 329–364. Bibcode:1998AnRFM..30..329C. doi:10.1146/annurev.fluid.30.1.329.
  2. 1 2 Steinhauser, M. O. (2017). Multiscale Modeling of Fluids and Solids - Theory and Applications. ISBN   978-3662532225.
  3. Martins, Ernane de Freitas; da Silva, Gabriela Dias; Salvador, Michele Aparecida; Baptista, Alvaro David Torrez; de Almeida, James Moraes; Miranda, Caetano Rodrigues (2019-10-28). "Uncovering the Mechanisms of Low-Salinity Water Injection EOR Processes: A Molecular Simulation Viewpoint". OTC-29885-MS. OTC. doi:10.4043/29885-MS.
  4. Oden, J. Tinsley; Vemaganti, Kumar; Moës, Nicolas (1999-04-16). "Hierarchical modeling of heterogeneous solids". Computer Methods in Applied Mechanics and Engineering. 172 (1): 3–25. Bibcode:1999CMAME.172....3O. doi:10.1016/S0045-7825(98)00224-2.
  5. Zeng, Q. H.; Yu, A. B.; Lu, G. Q. (2008-02-01). "Multiscale modeling and simulation of polymer nanocomposites". Progress in Polymer Science. 33 (2): 191–269. doi:10.1016/j.progpolymsci.2007.09.002.
  6. Baeurle, S. A. (2008). "Multiscale modeling of polymer materials using field-theoretic methodologies: A survey about recent developments". Journal of Mathematical Chemistry. 46 (2): 363–426. doi:10.1007/s10910-008-9467-3. S2CID   117867762.
  7. Kmiecik, Sebastian; Gront, Dominik; Kolinski, Michal; Wieteska, Lukasz; Dawid, Aleksandra Elzbieta; Kolinski, Andrzej (2016-06-22). "Coarse-Grained Protein Models and Their Applications". Chemical Reviews. 116 (14): 7898–936. doi: 10.1021/acs.chemrev.6b00163 . ISSN   0009-2665. PMID   27333362.
  8. 1 2 Levitt, Michael (2014-09-15). "Birth and Future of Multiscale Modeling for Macromolecular Systems (Nobel Lecture)". Angewandte Chemie International Edition. 53 (38): 10006–10018. doi:10.1002/anie.201403691. ISSN   1521-3773. PMID   25100216.
  9. 1 2 3 Karplus, Martin (2014-09-15). "Development of Multiscale Models for Complex Chemical Systems: From H+H2 to Biomolecules (Nobel Lecture)". Angewandte Chemie International Edition. 53 (38): 9992–10005. doi:10.1002/anie.201403924. ISSN   1521-3773. PMID   25066036.
  10. 1 2 Warshel, Arieh (2014-09-15). "Multiscale Modeling of Biological Functions: From Enzymes to Molecular Machines (Nobel Lecture)". Angewandte Chemie International Edition. 53 (38): 10020–10031. doi:10.1002/anie.201403689. ISSN   1521-3773. PMC   4948593 . PMID   25060243.
  11. De Pablo, Juan J. (2011). "Coarse-Grained Simulations of Macromolecules: From DNA to Nanocomposites". Annual Review of Physical Chemistry. 62: 555–74. Bibcode:2011ARPC...62..555D. doi:10.1146/annurev-physchem-032210-103458. PMID   21219152.
  12. Knizhnik, A.A.; Bagaturyants, A.A.; Belov, I.V.; Potapkin, B.V.; Korkin, A.A. (2002). "An integrated kinetic Monte Carlo molecular dynamics approach for film growth modeling and simulation: ZrO2 deposition on Si surface". Computational Materials Science. 24 (1–2): 128–132. doi:10.1016/S0927-0256(02)00174-X.
  13. Adamson, S.; Astapenko, V.; Chernysheva, I.; Chorkov, V.; Deminsky, M.; Demchenko, G.; Demura, A.; Demyanov, A.; et al. (2007). "Multiscale multiphysics nonempirical approach to calculation of light emission properties of chemically active nonequilibrium plasma: Application to Ar GaI3 system". Journal of Physics D: Applied Physics. 40 (13): 3857–3881. Bibcode:2007JPhD...40.3857A. doi:10.1088/0022-3727/40/13/S06. S2CID   97819264.
  14. da Silva, Gabriela Dias; de Freitas Martins, Ernane; Salvador, Michele Aparecida; Baptista, Alvaro David Torrez; de Almeida, James Moraes; Miranda, Caetano Rodrigues (2019). "From Atoms to Pre-salt Reservoirs: Multiscale Simulations of the Low-Salinity Enhanced Oil Recovery Mechanisms". Polytechnica. 2 (1–2): 30–50. doi:10.1007/s41050-019-00014-1. ISSN   2520-8497.
  15. E, Weinan (2011). Principles of multiscale modeling. Cambridge: Cambridge University Press. ISBN   978-1-107-09654-7. OCLC   721888752.
  16. Horstemeyer, M. F. (2009). "Multiscale Modeling: A Review". In Leszczyński, Jerzy; Shukla, Manoj K. (eds.). Practical Aspects of Computational Chemistry: Methods, Concepts and Applications. pp. 87–135. ISBN   978-90-481-2687-3.
  17. Horstemeyer, M. F. (2012). Integrated Computational Materials Engineering (ICME) for Metals. ISBN   978-1-118-02252-8.
  18. Tadmore, E.B.; Ortiz, M.; Phillips, R. (1996-09-27). "Quasicontinuum Analysis of Defects in Solids". Philosophical Magazine A. 73 (6): 1529–1563. Bibcode:1996PMagA..73.1529T. doi:10.1080/01418619608243000.

Further reading