Probabilistic latent semantic analysis

Last updated

Probabilistic latent semantic analysis (PLSA), also known as probabilistic latent semantic indexing (PLSI, especially in information retrieval circles) is a statistical technique for the analysis of two-mode and co-occurrence data. In effect, one can derive a low-dimensional representation of the observed variables in terms of their affinity to certain hidden variables, just as in latent semantic analysis, from which PLSA evolved.

Contents

Compared to standard latent semantic analysis which stems from linear algebra and downsizes the occurrence tables (usually via a singular value decomposition), probabilistic latent semantic analysis is based on a mixture decomposition derived from a latent class model.

Model

Plate notation representing the PLSA model ("asymmetric" formulation).
d
{\displaystyle d}
is the document index variable,
c
{\displaystyle c}
is a word's topic drawn from the document's topic distribution,
P
(
c
|
d
)
{\displaystyle P(c|d)}
, and
w
{\displaystyle w}
is a word drawn from the word distribution of this word's topic,
P
(
w
|
c
)
{\displaystyle P(w|c)}
. The
d
{\displaystyle d}
and
w
{\displaystyle w}
are observable variables, the topic
c
{\displaystyle c}
is a latent variable. Plsi 1.svg
Plate notation representing the PLSA model ("asymmetric" formulation). is the document index variable, is a word's topic drawn from the document's topic distribution, , and is a word drawn from the word distribution of this word's topic, . The and are observable variables, the topic is a latent variable.

Considering observations in the form of co-occurrences of words and documents, PLSA models the probability of each co-occurrence as a mixture of conditionally independent multinomial distributions:

with being the words' topic. Note that the number of topics is a hyperparameter that must be chosen in advance and is not estimated from the data. The first formulation is the symmetric formulation, where and are both generated from the latent class in similar ways (using the conditional probabilities and ), whereas the second formulation is the asymmetric formulation, where, for each document , a latent class is chosen conditionally to the document according to , and a word is then generated from that class according to . Although we have used words and documents in this example, the co-occurrence of any couple of discrete variables may be modelled in exactly the same way.

So, the number of parameters is equal to . The number of parameters grows linearly with the number of documents. In addition, although PLSA is a generative model of the documents in the collection it is estimated on, it is not a generative model of new documents.

Their parameters are learned using the EM algorithm.

Application

PLSA may be used in a discriminative setting, via Fisher kernels. [1]

PLSA has applications in information retrieval and filtering, natural language processing, machine learning from text, bioinformatics, [2] and related areas.

It is reported that the aspect model used in the probabilistic latent semantic analysis has severe overfitting problems. [3]

Extensions

History

This is an example of a latent class model (see references therein), and it is related [6] [7] to non-negative matrix factorization. The present terminology was coined in 1999 by Thomas Hofmann. [8]

See also

References and notes

  1. Thomas Hofmann, Learning the Similarity of Documents : an information-geometric approach to document retrieval and categorization, Advances in Neural Information Processing Systems 12, pp-914-920, MIT Press, 2000
  2. Pinoli, Pietro; et, al. (2013). "Enhanced probabilistic latent semantic analysis with weighting schemes to predict genomic annotations". Proceedings of IEEE BIBE 2013. The 13th IEEE International Conference on BioInformatics and BioEngineering. IEEE. pp. 1–4. doi:10.1109/BIBE.2013.6701702. ISBN   978-147993163-7.
  3. Blei, David M.; Andrew Y. Ng; Michael I. Jordan (2003). "Latent Dirichlet Allocation" (PDF). Journal of Machine Learning Research. 3: 993–1022. doi:10.1162/jmlr.2003.3.4-5.993.
  4. Alexei Vinokourov and Mark Girolami, A Probabilistic Framework for the Hierarchic Organisation and Classification of Document Collections, in Information Processing and Management, 2002
  5. Eric Gaussier, Cyril Goutte, Kris Popat and Francine Chen, A Hierarchical Model for Clustering and Categorising Documents Archived 2016-03-04 at the Wayback Machine , in "Advances in Information Retrieval -- Proceedings of the 24th BCS-IRSG European Colloquium on IR Research (ECIR-02)", 2002
  6. Chris Ding, Tao Li, Wei Peng (2006). "Nonnegative Matrix Factorization and Probabilistic Latent Semantic Indexing: Equivalence Chi-Square Statistic, and a Hybrid Method. AAAI 2006"
  7. Chris Ding, Tao Li, Wei Peng (2008). "On the equivalence between Non-negative Matrix Factorization and Probabilistic Latent Semantic Indexing"
  8. Thomas Hofmann, Probabilistic Latent Semantic Indexing, Proceedings of the Twenty-Second Annual International SIGIR Conference on Research and Development in Information Retrieval (SIGIR-99), 1999

Related Research Articles

Information retrieval (IR) in computing and information science is the process of obtaining information system resources that are relevant to an information need from a collection of those resources. Searches can be based on full-text or other content-based indexing. Information retrieval is the science of searching for information in a document, searching for documents themselves, and also searching for the metadata that describes data, and for databases of texts, images or sounds.

A hidden Markov model (HMM) is a statistical Markov model in which the system being modeled is assumed to be a Markov process — call it — with unobservable ("hidden") states. As part of the definition, HMM requires that there be an observable process whose outcomes are "influenced" by the outcomes of in a known way. Since cannot be observed directly, the goal is to learn about by observing HMM has an additional requirement that the outcome of at time must be "influenced" exclusively by the outcome of at and that the outcomes of and at must be conditionally independent of at given at time

<span class="mw-page-title-main">Unsupervised learning</span> Machine learning task

Unsupervised learning is a type of algorithm that learns patterns from untagged data. The goal is that through mimicry, which is an important mode of learning in people, the machine is forced to build a concise representation of its world and then generate imaginative content from it.

<span class="mw-page-title-main">Graphical model</span> Probabilistic model

A graphical model or probabilistic graphical model (PGM) or structured probabilistic model is a probabilistic model for which a graph expresses the conditional dependence structure between random variables. They are commonly used in probability theory, statistics—particularly Bayesian statistics—and machine learning.

In statistics, Gibbs sampling or a Gibbs sampler is a Markov chain Monte Carlo (MCMC) algorithm for obtaining a sequence of observations which are approximated from a specified multivariate probability distribution, when direct sampling is difficult. This sequence can be used to approximate the joint distribution ; to approximate the marginal distribution of one of the variables, or some subset of the variables ; or to compute an integral. Typically, some of the variables correspond to observations whose values are known, and hence do not need to be sampled.

Latent semantic analysis (LSA) is a technique in natural language processing, in particular distributional semantics, of analyzing relationships between a set of documents and the terms they contain by producing a set of concepts related to the documents and terms. LSA assumes that words that are close in meaning will occur in similar pieces of text. A matrix containing word counts per document is constructed from a large piece of text and a mathematical technique called singular value decomposition (SVD) is used to reduce the number of rows while preserving the similarity structure among columns. Documents are then compared by cosine similarity between any two columns. Values close to 1 represent very similar documents while values close to 0 represent very dissimilar documents.

A document-term matrix is a mathematical matrix that describes the frequency of terms that occur in a collection of documents. In a document-term matrix, rows correspond to documents in the collection and columns correspond to terms. This matrix is a specific instance of a document-feature matrix where "features" may refer to other properties of a document besides terms. It is also common to encounter the transpose, or term-document matrix where documents are the columns and terms are the rows. They are useful in the field of natural language processing and computational text analysis.

<span class="mw-page-title-main">Markov random field</span>

In the domain of physics and probability, a Markov random field (MRF), Markov network or undirected graphical model is a set of random variables having a Markov property described by an undirected graph. In other words, a random field is said to be a Markov random field if it satisfies Markov properties. The concept originates from the Sherrington–Kirkpatrick model.

In information retrieval, tf–idf, short for term frequency–inverse document frequency, is a numerical statistic that is intended to reflect how important a word is to a document in a collection or corpus. It is often used as a weighting factor in searches of information retrieval, text mining, and user modeling. The tf–idf value increases proportionally to the number of times a word appears in the document and is offset by the number of documents in the corpus that contain the word, which helps to adjust for the fact that some words appear more frequently in general. tf–idf has been one of the most popular term-weighting schemes. A survey conducted in 2015 showed that 83% of text-based recommender systems in digital libraries use tf–idf.

<span class="mw-page-title-main">Non-negative matrix factorization</span> Algorithms for matrix decomposition

Non-negative matrix factorization, also non-negative matrix approximation is a group of algorithms in multivariate analysis and linear algebra where a matrix V is factorized into (usually) two matrices W and H, with the property that all three matrices have no negative elements. This non-negativity makes the resulting matrices easier to inspect. Also, in applications such as processing of audio spectrograms or muscular activity, non-negativity is inherent to the data being considered. Since the problem is not exactly solvable in general, it is commonly approximated numerically.

In statistics, a latent class model (LCM) relates a set of observed multivariate variables to a set of latent variables. It is a type of latent variable model. It is called a latent class model because the latent variable is discrete. A class is characterized by a pattern of conditional probabilities that indicate the chance that variables take on certain values.

In natural language processing, Latent Dirichlet Allocation (LDA) is a generative statistical model that explains a set of observations through unobserved groups, and each group explains why some parts of the data are similar. The LDA is an example of a topic model. In this, observations are collected into documents, and each word's presence is attributable to one of the document's topics. Each document will contain a small number of topics.

In statistical classification, the Fisher kernel, named after Ronald Fisher, is a function that measures the similarity of two objects on the basis of sets of measurements for each object and a statistical model. In a classification procedure, the class for a new object can be estimated by minimising, across classes, an average of the Fisher kernel distance from the new object to each known member of the given class.

In probability theory and statistics, the Dirichlet-multinomial distribution is a family of discrete multivariate probability distributions on a finite support of non-negative integers. It is also called the Dirichlet compound multinomial distribution (DCM) or multivariate Pólya distribution. It is a compound probability distribution, where a probability vector p is drawn from a Dirichlet distribution with parameter vector , and an observation drawn from a multinomial distribution with probability vector p and number of trials n. The Dirichlet parameter vector captures the prior belief about the situation and can be seen as a pseudocount: observations of each outcome that occur before the actual data is collected. The compounding corresponds to a Pólya urn scheme. It is frequently encountered in Bayesian statistics, machine learning, empirical Bayes methods and classical statistics as an overdispersed multinomial distribution.

In computer vision, the bag-of-words model sometimes called bag-of-visual-words model can be applied to image classification or retrieval, by treating image features as words. In document classification, a bag of words is a sparse vector of occurrence counts of words; that is, a sparse histogram over the vocabulary. In computer vision, a bag of visual words is a vector of occurrence counts of a vocabulary of local image features.

In computer vision, the problem of object categorization from image search is the problem of training a classifier to recognize categories of objects, using only the images retrieved automatically with an Internet search engine. Ideally, automatic image collection would allow classifiers to be trained with nothing but the category names as input. This problem is closely related to that of content-based image retrieval (CBIR), where the goal is to return better image search results rather than training a classifier for image recognition.

The Generalized vector space model is a generalization of the vector space model used in information retrieval. Wong et al. presented an analysis of the problems that the pairwise orthogonality assumption of the vector space model (VSM) creates. From here they extended the VSM to the generalized vector space model (GVSM).

In machine learning and natural language processing, the pachinko allocation model (PAM) is a topic model. Topic models are a suite of algorithms to uncover the hidden thematic structure of a collection of documents. The algorithm improves upon earlier topic models such as latent Dirichlet allocation (LDA) by modeling correlations between topics in addition to the word correlations which constitute topics. PAM provides more flexibility and greater expressive power than latent Dirichlet allocation. While first described and implemented in the context of natural language processing, the algorithm may have applications in other fields such as bioinformatics. The model is named for pachinko machines—a game popular in Japan, in which metal balls bounce down around a complex collection of pins until they land in various bins at the bottom.

In statistics and natural language processing, a topic model is a type of statistical model for discovering the abstract "topics" that occur in a collection of documents. Topic modeling is a frequently used text-mining tool for discovery of hidden semantic structures in a text body. Intuitively, given that a document is about a particular topic, one would expect particular words to appear in the document more or less frequently: "dog" and "bone" will appear more often in documents about dogs, "cat" and "meow" will appear in documents about cats, and "the" and "is" will appear approximately equally in both. A document typically concerns multiple topics in different proportions; thus, in a document that is 10% about cats and 90% about dogs, there would probably be about 9 times more dog words than cat words. The "topics" produced by topic modeling techniques are clusters of similar words. A topic model captures this intuition in a mathematical framework, which allows examining a set of documents and discovering, based on the statistics of the words in each, what the topics might be and what each document's balance of topics is.

<span class="mw-page-title-main">Outline of machine learning</span> Overview of and topical guide to machine learning

The following outline is provided as an overview of and topical guide to machine learning. Machine learning is a subfield of soft computing within computer science that evolved from the study of pattern recognition and computational learning theory in artificial intelligence. In 1959, Arthur Samuel defined machine learning as a "field of study that gives computers the ability to learn without being explicitly programmed". Machine learning explores the study and construction of algorithms that can learn from and make predictions on data. Such algorithms operate by building a model from an example training set of input observations in order to make data-driven predictions or decisions expressed as outputs, rather than following strictly static program instructions.