Information security

Last updated

Information security, sometimes shortened to infosec, is the practice of protecting information by mitigating information risks. It is part of information risk management. It typically involves preventing or at least reducing the probability of unauthorized/inappropriate access, use, disclosure, disruption, deletion/destruction, corruption, modification, inspection, recording or devaluation, although it may also involve reducing the adverse impacts of incidents. Information may take any form, e.g. electronic or physical., [1] tangible (e.g. paperwork) or intangible (e.g. knowledge). Information security's primary focus is the balanced protection of the confidentiality, integrity and availability of data (also known as the CIA triad) while maintaining a focus on efficient policy implementation, all without hampering organization productivity. [2] This is largely achieved through a structured risk management process that involves:

Information that which informs; the answer to a question of some kind; that from which data and knowledge can be derived

Information can be thought of as the resolution of uncertainty; it is that which answers the question of "what an entity is" and thus defines both its essence and nature of its characteristics. It is associated with data, as data represents values attributed to parameters, and information is data in context and with meaning attached. Information relates also to knowledge, as knowledge signifies understanding of an abstract or concrete concept.

A risk management information system (RMIS) is an information system that assists in consolidating property values, claims, policy, and exposure information and providing the tracking and management reporting capabilities to enable the user to monitor and control the overall cost of risk management.

Contents

To standardize this discipline, academics and professionals collaborate to offer guidance, policies, and industry standards on password, antivirus software, firewall, encryption software, legal liability, security awareness and training, and so forth. [3] This standardization may be further driven by a wide variety of laws and regulations that affect how data is accessed, processed, stored, transferred and destroyed. However, the implementation of any standards and guidance within an entity may have limited effect if a culture of continual improvement isn't adopted. [4]

Password used for user authentication to prove identity or access approval

A password, sometimes called a passcode, is a memorized secret used to confirm the identity of a user. Using the terminology of the NIST Digital Identity Guidelines, the secret is memorized by a party called the claimant while the party verifying the identity of the claimant is called the verifier. When the claimant successfully demonstrates knowledge of the password to the verifier through an established authentication protocol, the verifier is able to infer the claimant’s identity.

Antivirus software computer software to defend against malicious computer viruses

Antivirus software, or anti-virus software, also known as anti-malware, is a computer program used to prevent, detect, and remove malware.

In computing, a firewall is a network security system that monitors and controls incoming and outgoing network traffic based on predetermined security rules. A firewall typically establishes a barrier between a trusted internal network and untrusted external network, such as the Internet.

Overview

At the core of information security is information assurance, the act of maintaining the confidentiality, integrity and availability (CIA) of information, ensuring that information is not compromised in any way when critical issues arise. [5] These issues include but are not limited to natural disasters, computer/server malfunction, and physical theft. While paper-based business operations are still prevalent, requiring their own set of information security practices, enterprise digital initiatives are increasingly being emphasized, [6] [7] with information assurance now typically being dealt with by information technology (IT) security specialists. These specialists apply information security to technology (most often some form of computer system). It is worthwhile to note that a computer does not necessarily mean a home desktop. A computer is any device with a processor and some memory. Such devices can range from non-networked standalone devices as simple as calculators, to networked mobile computing devices such as smartphones and tablet computers. IT security specialists are almost always found in any major enterprise/establishment due to the nature and value of the data within larger businesses. They are responsible for keeping all of the technology within the company secure from malicious cyber attacks that often attempt to acquire critical private information or gain control of the internal systems.

A computer is a machine that can be instructed to carry out sequences of arithmetic or logical operations automatically via computer programming. Modern computers have the ability to follow generalized sets of operations, called programs. These programs enable computers to perform an extremely wide range of tasks. A "complete" computer including the hardware, the operating system, and peripheral equipment required and used for "full" operation can be referred to as a computer system. This term may as well be used for a group of computers that are connected and work together, in particular a computer network or computer cluster.

Central processing unit Central component of any computer system which executes input/output, arithmetical, and logical operations

A central processing unit (CPU), also called a central processor or main processor, is the electronic circuitry within a computer that carries out the instructions of a computer program by performing the basic arithmetic, logic, controlling, and input/output (I/O) operations specified by the instructions. The computer industry has used the term "central processing unit" at least since the early 1960s. Traditionally, the term "CPU" refers to a processor, more specifically to its processing unit and control unit (CU), distinguishing these core elements of a computer from external components such as main memory and I/O circuitry.

Technology making, modification, usage, and knowledge of tools, machines, techniques, crafts, systems, and methods of organization

Technology is the sum of techniques, skills, methods, and processes used in the production of goods or services or in the accomplishment of objectives, such as scientific investigation. Technology can be the knowledge of techniques, processes, and the like, or it can be embedded in machines to allow for operation without detailed knowledge of their workings. Systems applying technology by taking an input, changing it according to the system's use, and then producing an outcome are referred to as technology systems or technological systems.

The field of information security has grown and evolved significantly in recent years. It offers many areas for specialization, including securing networks and allied infrastructure, securing applications and databases, security testing, information systems auditing, business continuity planning, electronic record discovery, and digital forensics. Information security professionals are very stable in their employment. As of 2013 more than 80 percent of professionals had no change in employer or employment over a period of a year, and the number of professionals is projected to continuously grow more than 11 percent annually from 2014 to 2019. [8]

Infrastructure Facilities and systems serving society

Infrastructure is the fundamental facilities and systems serving a country, city, or other area, including the services and facilities necessary for its economy to function. Infrastructure is composed of public and private physical improvements such as roads, railways, bridges, tunnels, water supply, sewers, electrical grids, and telecommunications. In general, it has also been defined as "the physical components of interrelated systems providing commodities and services essential to enable, sustain, or enhance societal living conditions".

Application software computer software designed to perform a group of coordinated functions, tasks, or activities for the benefit of the user

Application software is software designed to perform a group of coordinated functions, tasks, or activities for the benefit of the user. Examples of an application include a word processor, a spreadsheet, an accounting application, a web browser, an email client, a media player, a file viewer, an aeronautical flight simulator, a console game or a photo editor. The collective noun application software refers to all applications collectively. This contrasts with system software, which is mainly involved with running the computer.

Database organized collection of data

A database is an organized collection of data, generally stored and accessed electronically from a computer system. Where databases are more complex they are often developed using formal design and modeling techniques.

Threats

Information security threats come in many different forms. Some of the most common threats today are software attacks, theft of intellectual property, identity theft, theft of equipment or information, sabotage, and information extortion. Most people have experienced software attacks of some sort. Viruses, [9] worms, phishing attacks and Trojan horses are a few common examples of software attacks. The theft of intellectual property has also been an extensive issue for many businesses in the information technology (IT) field. Identity theft is the attempt to act as someone else usually to obtain that person's personal information or to take advantage of their access to vital information through social engineering. Theft of equipment or information is becoming more prevalent today due to the fact that most devices today are mobile, [10] are prone to theft and have also become far more desirable as the amount of data capacity increases. Sabotage usually consists of the destruction of an organization's website in an attempt to cause loss of confidence on the part of its customers. Information extortion consists of theft of a company's property or information as an attempt to receive a payment in exchange for returning the information or property back to its owner, as with ransomware. There are many ways to help protect yourself from some of these attacks but one of the most functional precautions is conduct periodical user awareness. The number one threat to any organisation are users or internal employees, they are also called insider threats.

In computer security, a threat is a possible danger that might exploit a vulnerability to breach security and therefore cause possible harm.

Computer virus computer program that can replicate itself and spread from one computer to another

A computer virus is a type of computer program that, when executed, replicates itself by modifying other computer programs and inserting its own code. When this replication succeeds, the affected areas are then said to be "infected" with a computer virus.

Computer worm standalone malware computer program that replicates itself in order to spread to other computers

A computer worm is a standalone malware computer program that replicates itself in order to spread to other computers. Often, it uses a computer network to spread itself, relying on security failures on the target computer to access it. Worms almost always cause at least some harm to the network, even if only by consuming bandwidth, whereas viruses almost always corrupt or modify files on a targeted computer.

Governments, military, corporations, financial institutions, hospitals, non-profit organisations and private businesses amass a great deal of confidential information about their employees, customers, products, research and financial status. Should confidential information about a business' customers or finances or new product line fall into the hands of a competitor or a black hat hacker, a business and its customers could suffer widespread, irreparable financial loss, as well as damage to the company's reputation. From a business perspective, information security must be balanced against cost; the Gordon-Loeb Model provides a mathematical economic approach for addressing this concern. [11]

Military Organization primarily tasked with preparing for and conducting war

A military is a heavily-armed, highly organised force primarily intended for warfare, also known collectively as armed forces. It is typically officially authorized and maintained by a sovereign state, with its members identifiable by their distinct military uniform. It may consist of one or more military branches such as an Army, Navy, Air Force and in certain countries, Marines and Coast Guard. The main task of the military is usually defined as defence of the state and its interests against external armed threats.

Corporation Separate legal entity that has been incorporated through a legislative or registration process established through legislation

A corporation is an organization—usually a group of people or a company—authorized by the state to act as a single entity and recognized as such in law for certain purposes. Early incorporated entities were established by charter. Most jurisdictions now allow the creation of new corporations through registration.

Financial institution institution that provides financial services for its clients or members

Financial institutions, otherwise known as banking institutions, are corporations that provide services as intermediaries of financial markets. Broadly speaking, there are three major types of financial institutions:

  1. Depository institutions – deposit-taking institutions that accept and manage deposits and make loans, including banks, building societies, credit unions, trust companies, and mortgage loan companies;
  2. Contractual institutions – insurance companies and pension funds
  3. Investment institutions – investment banks, underwriters, brokerage firms.

For the individual, information security has a significant effect on privacy, which is viewed very differently in various cultures.

Responses to threats

Possible responses to a security threat or risk are: [12]

  • reduce/mitigate – implement safeguards and countermeasures to eliminate vulnerabilities or block threats
  • assign/transfer – place the cost of the threat onto another entity or organization such as purchasing insurance or outsourcing
  • accept – evaluate if the cost of the countermeasure outweighs the possible cost of loss due to the threat

History

Since the early days of communication, diplomats and military commanders understood that it was necessary to provide some mechanism to protect the confidentiality of correspondence and to have some means of detecting tampering. Julius Caesar is credited with the invention of the Caesar cipher c. 50 B.C., which was created in order to prevent his secret messages from being read should a message fall into the wrong hands; however, for the most part protection was achieved through the application of procedural handling controls. [13] [14] Sensitive information was marked up to indicate that it should be protected and transported by trusted persons, guarded and stored in a secure environment or strong box. As postal services expanded, governments created official organizations to intercept, decipher, read and reseal letters (e.g., the U.K.'s Secret Office, founded in 1653 [15] ).

In the mid-nineteenth century more complex classification systems were developed to allow governments to manage their information according to the degree of sensitivity. For example, the British Government codified this, to some extent, with the publication of the Official Secrets Act in 1889. [16] By the time of the First World War, multi-tier classification systems were used to communicate information to and from various fronts, which encouraged greater use of code making and breaking sections in diplomatic and military headquarters. Encoding became more sophisticated between the wars as machines were employed to scramble and unscramble information. The volume of information shared by the Allied countries during the Second World War necessitated formal alignment of classification systems and procedural controls. An arcane range of markings evolved to indicate who could handle documents (usually officers rather than enlisted troops) and where they should be stored as increasingly complex safes and storage facilities were developed. The Enigma Machine, which was employed by the Germans to encrypt the data of warfare and was successfully decrypted by Alan Turing, can be regarded as a striking example of creating and using secured information. [17] Procedures evolved to ensure documents were destroyed properly, and it was the failure to follow these procedures which led to some of the greatest intelligence coups of the war (e.g., the capture of U-570 [17] ).

The end of the twentieth century and the early years of the twenty-first century saw rapid advancements in telecommunications, computing hardware and software, and data encryption. The availability of smaller, more powerful and less expensive computing equipment made electronic data processing within the reach of small business and the home user.[ citation needed ] These computers quickly became interconnected through the internet.

The rapid growth and widespread use of electronic data processing and electronic business conducted through the internet, along with numerous occurrences of international terrorism, fueled the need for better methods of protecting the computers and the information they store, process and transmit. [18] The academic disciplines of computer security and information assurance emerged along with numerous professional organizations, all sharing the common goals of ensuring the security and reliability of information systems.

Definitions

Information Security Attributes: or qualities, i.e., Confidentiality, Integrity and Availability (CIA). Information Systems are composed in three main portions, hardware, software and communications with the purpose to help identify and apply information security industry standards, as mechanisms of protection and prevention, at three levels or layers: physical, personal and organizational. Essentially, procedures or policies are implemented to tell administrators, users and operators how to use products to ensure information security within the organizations. CIAJMK1209.png
Information Security Attributes: or qualities, i.e., Confidentiality, Integrity and Availability (CIA). Information Systems are composed in three main portions, hardware, software and communications with the purpose to help identify and apply information security industry standards, as mechanisms of protection and prevention, at three levels or layers: physical, personal and organizational. Essentially, procedures or policies are implemented to tell administrators, users and operators how to use products to ensure information security within the organizations.

Various definitions of information security are suggested below, summarized from different sources:

  1. "Preservation of confidentiality, integrity and availability of information. Note: In addition, other properties, such as authenticity, accountability, non-repudiation and reliability can also be involved." (ISO/IEC 27000:2009) [20]
  2. "The protection of information and information systems from unauthorized access, use, disclosure, disruption, modification, or destruction in order to provide confidentiality, integrity, and availability." (CNSS, 2010) [21]
  3. "Ensures that only authorized users (confidentiality) have access to accurate and complete information (integrity) when required (availability)." (ISACA, 2008) [22]
  4. "Information Security is the process of protecting the intellectual property of an organisation." (Pipkin, 2000) [23]
  5. "...information security is a risk management discipline, whose job is to manage the cost of information risk to the business." (McDermott and Geer, 2001) [24]
  6. "A well-informed sense of assurance that information risks and controls are in balance." (Anderson, J., 2003) [25]
  7. "Information security is the protection of information and minimizes the risk of exposing information to unauthorized parties." (Venter and Eloff, 2003) [26]
  8. "Information Security is a multidisciplinary area of study and professional activity which is concerned with the development and implementation of security mechanisms of all available types (technical, organizational, human-oriented and legal) in order to keep information in all its locations (within and outside the organization's perimeter) and, consequently, information systems, where information is created, processed, stored, transmitted and destroyed, free from threats.Threats to information and information systems may be categorized and a corresponding security goal may be defined for each category of threats. A set of security goals, identified as a result of a threat analysis, should be revised periodically to ensure its adequacy and conformance with the evolving environment. The currently relevant set of security goals may include: confidentiality, integrity, availability, privacy, authenticity & trustworthiness, non-repudiation, accountability and auditability." (Cherdantseva and Hilton, 2013) [19]

Basic principles

Key concepts

Poster promoting information security by the Russian Ministry of Defence Posters for information security for the Ministry of Defense of the Russian Federation.jpg
Poster promoting information security by the Russian Ministry of Defence

The CIA triad of confidentiality, integrity, and availability is at the heart of information security. [27] (The members of the classic InfoSec triad—confidentiality, integrity and availability—are interchangeably referred to in the literature as security attributes, properties, security goals, fundamental aspects, information criteria, critical information characteristics and basic building blocks.) However, debate continues about whether or not this CIA triad is sufficient to address rapidly changing technology and business requirements, with recommendations to consider expanding on the intersections between availability and confidentiality, as well as the relationship between security and privacy. [5] Other principles such as "accountability" have sometimes been proposed; it has been pointed out that issues such as non-repudiation do not fit well within the three core concepts. [28]

In 1992 and revised in 2002, the OECD's Guidelines for the Security of Information Systems and Networks [29] proposed the nine generally accepted principles: awareness, responsibility, response, ethics, democracy, risk assessment, security design and implementation, security management, and reassessment. Building upon those, in 2004 the NIST's Engineering Principles for Information Technology Security [28] proposed 33 principles. From each of these derived guidelines and practices.

In 1998, Donn Parker proposed an alternative model for the classic CIA triad that he called the six atomic elements of information. The elements are confidentiality, possession, integrity, authenticity, availability, and utility. The merits of the Parkerian Hexad are a subject of debate amongst security professionals. [30]

In 2011, The Open Group published the information security management standard O-ISM3. [31] This standard proposed an operational definition of the key concepts of security, with elements called "security objectives", related to access control (9), availability (3), data quality (1), compliance and technical (4). In 2009, DoD Software Protection Initiative released the Three Tenets of Cybersecurity which are System Susceptibility, Access to the Flaw, and Capability to Exploit the Flaw. [32] [33] [34] Neither of these models are widely adopted.

Confidentiality

In information security, confidentiality "is the property, that information is not made available or disclosed to unauthorized individuals, entities, or processes." [35] While similar to "privacy," the two words aren't interchangeable. Rather, confidentiality is a component of privacy that implements to protect our data from unauthorized viewers. Examples of confidentiality of electronic data being compromised include laptop theft, password theft, or sensitive emails being sent to the incorrect individuals. [2]

Integrity

In information security, data integrity means maintaining and assuring the accuracy and completeness of data over its entire lifecycle. [36] This means that data cannot be modified in an unauthorized or undetected manner. This is not the same thing as referential integrity in databases, although it can be viewed as a special case of consistency as understood in the classic ACID model of transaction processing. Information security systems typically provide message integrity alongside confidentiality.

Availability

For any information system to serve its purpose, the information must be available when it is needed. This means the computing systems used to store and process the information, the security controls used to protect it, and the communication channels used to access it must be functioning correctly. High availability systems aim to remain available at all times, preventing service disruptions due to power outages, hardware failures, and system upgrades. Ensuring availability also involves preventing denial-of-service attacks, such as a flood of incoming messages to the target system, essentially forcing it to shut down. [37]

In the realm of information security, availability can often be viewed as one of the most important parts of a successful information security program. Ultimately end-users need to be able to perform job functions; by ensuring availability an organization is able to perform to the standards that an organization's stakeholders expect. This can involve topics such as proxy configurations, outside web access, the ability to access shared drives and the ability to send emails. Executives oftentimes do not understand the technical side of information security and look at availability as an easy fix, but this often requires collaboration from many different organizational teams, such as network operations, development operations, incident response and policy/change management. A successful information security team involves many different key roles to mesh and align for the CIA triad to be provided effectively.

Non-repudiation

In law, non-repudiation implies one's intention to fulfill their obligations to a contract. It also implies that one party of a transaction cannot deny having received a transaction, nor can the other party deny having sent a transaction. [38]

It is important to note that while technology such as cryptographic systems can assist in non-repudiation efforts, the concept is at its core a legal concept transcending the realm of technology. It is not, for instance, sufficient to show that the message matches a digital signature signed with the sender's private key, and thus only the sender could have sent the message, and nobody else could have altered it in transit (data integrity). The alleged sender could in return demonstrate that the digital signature algorithm is vulnerable or flawed, or allege or prove that his signing key has been compromised. The fault for these violations may or may not lie with the sender, and such assertions may or may not relieve the sender of liability, but the assertion would invalidate the claim that the signature necessarily proves authenticity and integrity. As such, the sender may repudiate the message (because authenticity and integrity are pre-requisites for non-repudiation).

Risk management

The Certified Information Systems Auditor (CISA) Review Manual 2006 provides the following definition of risk management: "Risk management is the process of identifying vulnerabilities and threats to the information resources used by an organization in achieving business objectives, and deciding what countermeasures, if any, to take in reducing risk to an acceptable level, based on the value of the information resource to the organization." [39]

There are two things in this definition that may need some clarification. First, the process of risk management is an ongoing, iterative process. It must be repeated indefinitely. The business environment is constantly changing and new threats and vulnerabilities emerge every day. Second, the choice of countermeasures (controls) used to manage risks must strike a balance between productivity, cost, effectiveness of the countermeasure, and the value of the informational asset being protected.

Risk analysis and risk evaluation processes have their limitations since, when security incidents occur, they emerge in a context, and their rarity and uniqueness give rise to unpredictable threats. The analysis of these phenomena, which are characterized by breakdowns, surprises and side-effects, requires a theoretical approach that is able to examine and interpret subjectively the detail of each incident. [40]

Risk is the likelihood that something bad will happen that causes harm to an informational asset (or the loss of the asset). A vulnerability is a weakness that could be used to endanger or cause harm to an informational asset. A threat is anything (man-made or act of nature) that has the potential to cause harm.

The likelihood that a threat will use a vulnerability to cause harm creates a risk. When a threat does use a vulnerability to inflict harm, it has an impact. In the context of information security, the impact is a loss of availability, integrity, and confidentiality, and possibly other losses (lost income, loss of life, loss of real property). [41] It should be pointed out that it is not possible to identify all risks, nor is it possible to eliminate all risk. The remaining risk is called "residual risk."

A risk assessment is carried out by a team of people who have knowledge of specific areas of the business. Membership of the team may vary over time as different parts of the business are assessed. The assessment may use a subjective qualitative analysis based on informed opinion, or where reliable dollar figures and historical information is available, the analysis may use quantitative analysis.

Research has shown that the most vulnerable point in most information systems is the human user, operator, designer, or other human. [42] The ISO/IEC 27002:2005 Code of practice for information security management recommends the following be examined during a risk assessment:

In broad terms, the risk management process consists of: [43] [44]

  1. Identification of assets and estimating their value. Include: people, buildings, hardware, software, data (electronic, print, other), supplies.
  2. Conduct a threat assessment. Include: Acts of nature, acts of war, accidents, malicious acts originating from inside or outside the organization.
  3. Conduct a vulnerability assessment, and for each vulnerability, calculate the probability that it will be exploited. Evaluate policies, procedures, standards, training, physical security, quality control, technical security.
  4. Calculate the impact that each threat would have on each asset. Use qualitative analysis or quantitative analysis.
  5. Identify, select and implement appropriate controls. Provide a proportional response. Consider productivity, cost effectiveness, and value of the asset.
  6. Evaluate the effectiveness of the control measures. Ensure the controls provide the required cost effective protection without discernible loss of productivity.

For any given risk, management can choose to accept the risk based upon the relative low value of the asset, the relative low frequency of occurrence, and the relative low impact on the business. Or, leadership may choose to mitigate the risk by selecting and implementing appropriate control measures to reduce the risk. In some cases, the risk can be transferred to another business by buying insurance or outsourcing to another business. [45] The reality of some risks may be disputed. In such cases leadership may choose to deny the risk.

Security controls

Selecting and implementing proper security controls will initially help an organization bring down risk to acceptable levels. Control selection should follow and should be based on the risk assessment. Controls can vary in nature, but fundamentally they are ways of protecting the confidentiality, integrity or availability of information. ISO/IEC 27001 has defined controls in different areas. Organizations can implement additional controls according to requirement of the organization. [46] ISO/IEC 27002 offers a guideline for organizational information security standards.

Administrative

Administrative controls consist of approved written policies, procedures, standards and guidelines. Administrative controls form the framework for running the business and managing people. They inform people on how the business is to be run and how day-to-day operations are to be conducted. Laws and regulations created by government bodies are also a type of administrative control because they inform the business. Some industry sectors have policies, procedures, standards and guidelines that must be followed – the Payment Card Industry Data Security Standard [1] (PCI DSS) required by Visa and MasterCard is such an example. Other examples of administrative controls include the corporate security policy, password policy, hiring policies, and disciplinary policies.

Administrative controls form the basis for the selection and implementation of logical and physical controls. Logical and physical controls are manifestations of administrative controls, which are of paramount importance.

Logical

Logical controls (also called technical controls) use software and data to monitor and control access to information and computing systems. Passwords, network and host-based firewalls, network intrusion detection systems, access control lists, and data encryption are examples of logical controls.

An important logical control that is frequently overlooked is the principle of least privilege, which requires that an individual, program or system process not be granted any more access privileges than are necessary to perform the task. [47] A blatant example of the failure to adhere to the principle of least privilege is logging into Windows as user Administrator to read email and surf the web. Violations of this principle can also occur when an individual collects additional access privileges over time. This happens when employees' job duties change, employees are promoted to a new position, or employees are transferred to another department. The access privileges required by their new duties are frequently added onto their already existing access privileges, which may no longer be necessary or appropriate.

Physical

Physical controls monitor and control the environment of the work place and computing facilities. They also monitor and control access to and from such facilities and include doors, locks, heating and air conditioning, smoke and fire alarms, fire suppression systems, cameras, barricades, fencing, security guards, cable locks, etc. Separating the network and workplace into functional areas are also physical controls.

An important physical control that is frequently overlooked is separation of duties, which ensures that an individual can not complete a critical task by himself. For example, an employee who submits a request for reimbursement should not also be able to authorize payment or print the check. An applications programmer should not also be the server administrator or the database administrator; these roles and responsibilities must be separated from one another. [48]

Defense in depth

The onion model of defense in depth Defense In Depth - Onion Model.svg
The onion model of defense in depth

Information security must protect information throughout its lifespan, from the initial creation of the information on through to the final disposal of the information. The information must be protected while in motion and while at rest. During its lifetime, information may pass through many different information processing systems and through many different parts of information processing systems. There are many different ways the information and information systems can be threatened. To fully protect the information during its lifetime, each component of the information processing system must have its own protection mechanisms. The building up, layering on and overlapping of security measures is called "defense in depth." In contrast to a metal chain, which is famously only as strong as its weakest link, the defense in depth strategy aims at a structure where, should one defensive measure fail, other measures will continue to provide protection. [49]

Recall the earlier discussion about administrative controls, logical controls, and physical controls. The three types of controls can be used to form the basis upon which to build a defense in depth strategy. With this approach, defense in depth can be conceptualized as three distinct layers or planes laid one on top of the other. Additional insight into defense in depth can be gained by thinking of it as forming the layers of an onion, with data at the core of the onion, people the next outer layer of the onion, and network security, host-based security and application security forming the outermost layers of the onion. Both perspectives are equally valid, and each provides valuable insight into the implementation of a good defense in depth strategy.

Security classification for information

An important aspect of information security and risk management is recognizing the value of information and defining appropriate procedures and protection requirements for the information. Not all information is equal and so not all information requires the same degree of protection. This requires information to be assigned a security classification. The first step in information classification is to identify a member of senior management as the owner of the particular information to be classified. Next, develop a classification policy. The policy should describe the different classification labels, define the criteria for information to be assigned a particular label, and list the required security controls for each classification. [50]

Some factors that influence which classification information should be assigned include how much value that information has to the organization, how old the information is and whether or not the information has become obsolete. Laws and other regulatory requirements are also important considerations when classifying information. The Information Systems Audit and Control Association (ISACA) and its Business Model for Information Security also serves as a tool for security professionals to examine security from a systems perspective, creating an environment where security can be managed holistically, allowing actual risks to be addressed. [51]

The type of information security classification labels selected and used will depend on the nature of the organization, with examples being: [50]

All employees in the organization, as well as business partners, must be trained on the classification schema and understand the required security controls and handling procedures for each classification. The classification of a particular information asset that has been assigned should be reviewed periodically to ensure the classification is still appropriate for the information and to ensure the security controls required by the classification are in place and are followed in their right procedures.

Access control

Access to protected information must be restricted to people who are authorized to access the information. The computer programs, and in many cases the computers that process the information, must also be authorized. This requires that mechanisms be in place to control the access to protected information. The sophistication of the access control mechanisms should be in parity with the value of the information being protected; the more sensitive or valuable the information the stronger the control mechanisms need to be. The foundation on which access control mechanisms are built start with identification and authentication.

Access control is generally considered in three steps: identification, authentication, and authorization. [2]

Identification

Identification is an assertion of who someone is or what something is. If a person makes the statement "Hello, my name is John Doe" they are making a claim of who they are. However, their claim may or may not be true. Before John Doe can be granted access to protected information it will be necessary to verify that the person claiming to be John Doe really is John Doe. Typically the claim is in the form of a username. By entering that username you are claiming "I am the person the username belongs to".

Authentication

Authentication is the act of verifying a claim of identity. When John Doe goes into a bank to make a withdrawal, he tells the bank teller he is John Doe, a claim of identity. The bank teller asks to see a photo ID, so he hands the teller his driver's license. The bank teller checks the license to make sure it has John Doe printed on it and compares the photograph on the license against the person claiming to be John Doe. If the photo and name match the person, then the teller has authenticated that John Doe is who he claimed to be. Similarly, by entering the correct password, the user is providing evidence that he/she is the person the username belongs to.

There are three different types of information that can be used for authentication:

Strong authentication requires providing more than one type of authentication information (two-factor authentication). The username is the most common form of identification on computer systems today and the password is the most common form of authentication. Usernames and passwords have served their purpose, but they are increasingly inadequate. [52] Usernames and passwords are slowly being replaced or supplemented with more sophisticated authentication mechanisms such as Time-based One-time Password algorithms.

Authorization

After a person, program or computer has successfully been identified and authenticated then it must be determined what informational resources they are permitted to access and what actions they will be allowed to perform (run, view, create, delete, or change). This is called authorization. Authorization to access information and other computing services begins with administrative policies and procedures. The policies prescribe what information and computing services can be accessed, by whom, and under what conditions. The access control mechanisms are then configured to enforce these policies. Different computing systems are equipped with different kinds of access control mechanisms. Some may even offer a choice of different access control mechanisms. The access control mechanism a system offers will be based upon one of three approaches to access control, or it may be derived from a combination of the three approaches. [2]

The non-discretionary approach consolidates all access control under a centralized administration. The access to information and other resources is usually based on the individuals function (role) in the organization or the tasks the individual must perform. The discretionary approach gives the creator or owner of the information resource the ability to control access to those resources. In the mandatory access control approach, access is granted or denied basing upon the security classification assigned to the information resource.

Examples of common access control mechanisms in use today include role-based access control, available in many advanced database management systems; simple file permissions provided in the UNIX and Windows operating systems; Group Policy Objects provided in Windows network systems; and Kerberos, RADIUS, TACACS, and the simple access lists used in many firewalls and routers.

To be effective, policies and other security controls must be enforceable and upheld. Effective policies ensure that people are held accountable for their actions. The U.S. Treasury's guidelines for systems processing sensitive or proprietary information, for example, states that all failed and successful authentication and access attempts must be logged, and all access to information must leave some type of audit trail. [53]

Also, the need-to-know principle needs to be in effect when talking about access control. This principle gives access rights to a person to perform their job functions. This principle is used in the government when dealing with difference clearances. Even though two employees in different departments have a top-secret clearance, they must have a need-to-know in order for information to be exchanged. Within the need-to-know principle, network administrators grant the employee the least amount of privileges to prevent employees from accessing more than what they are supposed to. Need-to-know helps to enforce the confidentiality-integrity-availability triad. Need-to-know directly impacts the confidential area of the triad.

Cryptography

Information security uses cryptography to transform usable information into a form that renders it unusable by anyone other than an authorized user; this process is called encryption. Information that has been encrypted (rendered unusable) can be transformed back into its original usable form by an authorized user who possesses the cryptographic key, through the process of decryption. Cryptography is used in information security to protect information from unauthorized or accidental disclosure while the information is in transit (either electronically or physically) and while information is in storage. [2]

Cryptography provides information security with other useful applications as well, including improved authentication methods, message digests, digital signatures, non-repudiation, and encrypted network communications. Older, less secure applications such as Telnet and File Transfer Protocol (FTP) are slowly being replaced with more secure applications such as Secure Shell (SSH) that use encrypted network communications. Wireless communications can be encrypted using protocols such as WPA/WPA2 or the older (and less secure) WEP. Wired communications (such as ITU‑T G.hn) are secured using AES for encryption and X.1035 for authentication and key exchange. Software applications such as GnuPG or PGP can be used to encrypt data files and email.

Cryptography can introduce security problems when it is not implemented correctly. Cryptographic solutions need to be implemented using industry-accepted solutions that have undergone rigorous peer review by independent experts in cryptography. The length and strength of the encryption key is also an important consideration. A key that is weak or too short will produce weak encryption. The keys used for encryption and decryption must be protected with the same degree of rigor as any other confidential information. They must be protected from unauthorized disclosure and destruction and they must be available when needed. Public key infrastructure (PKI) solutions address many of the problems that surround key management. [2]

Process

The terms "reasonable and prudent person," "due care" and "due diligence" have been used in the fields of finance, securities, and law for many years. In recent years these terms have found their way into the fields of computing and information security. [44] U.S. Federal Sentencing Guidelines now make it possible to hold corporate officers liable for failing to exercise due care and due diligence in the management of their information systems. [54]

In the business world, stockholders, customers, business partners and governments have the expectation that corporate officers will run the business in accordance with accepted business practices and in compliance with laws and other regulatory requirements. This is often described as the "reasonable and prudent person" rule. A prudent person takes due care to ensure that everything necessary is done to operate the business by sound business principles and in a legal, ethical manner. A prudent person is also diligent (mindful, attentive, ongoing) in their due care of the business.

In the field of information security, Harris [55] offers the following definitions of due care and due diligence:

"Due care are steps that are taken to show that a company has taken responsibility for the activities that take place within the corporation and has taken the necessary steps to help protect the company, its resources, and employees." And, [Due diligence are the]"continual activities that make sure the protection mechanisms are continually maintained and operational."

Attention should be made to two important points in these definitions. First, in due care, steps are taken to show; this means that the steps can be verified, measured, or even produce tangible artifacts. Second, in due diligence, there are continual activities; this means that people are actually doing things to monitor and maintain the protection mechanisms, and these activities are ongoing.

Organizations have a responsibility with practicing duty of care when applying information security. The Duty of Care Risk Analysis Standard (DoCRA) [56] provides principles and practices for evaluating risk. It considers all parties that could be affected by those risks. DoCRA helps evaluate safeguards if they are appropriate in protecting others from harm while presenting a reasonable burden. With increased data breach litigation, companies must balance security controls, compliance, and its mission.

Security governance

The Software Engineering Institute at Carnegie Mellon University, in a publication titled Governing for Enterprise Security (GES) Implementation Guide, defines characteristics of effective security governance. These include: [57]

Incident response plans

An incident response plan is a group of policies that dictate an organizations reaction to a cyber attack. Once an security breach has been identified the plan is initiated. It is important to note that there can be legal implications to a data breach. Knowing local and federal laws is critical. Every plan is unique to the needs of the organization, and it can involve skill set that are not part of an IT team. For example, a lawyer may be included in the response plan to help navigate legal implications to a data breach. [58]

As mentioned above every plan is unique but most plans will include the following: [59]

Preparation

Good preparation includes the development of an Incident Response Team. Skills need to be used by this team would be, penetration testing, computer forensics, network security, etc. This team should also keep track of trends in cybersecurity and modern attack strategies. A training program for end users is important as well as most modern attack strategies target users on the network. [59]

Identification

This part of the incident response plan identifies if there was a security event. When an end user reports information or an admin notices irregularities, an investigation is launched. An incident log is a crucial part of this step. All of the members of the team should be updating this log to ensure that information flows as fast as possible. If it has been identified that a security breach has occurred the next step should be activated. [60]

Containment

In this phase, the IRT works to isolate the areas that the breach took place to limit the scope of the security event. During this phase it is important to preserve information forensically so it can be analyzed later in the process. Containment could be as simple as physically containing a server room or as complex as segmenting a network to not allow the spread of a virus. [61]

Eradication

This is where the threat that was identified is removed from the affected systems. This could include using deleting malicious files, terminating compromised accounts, or deleting other components. Some events do not require this step, however it is important to fully understand the event before moving to this step. This will help to ensure that the threat is completely removed. [61]

Recovery

This stage is where the systems are restored back to original operation. This stage could include the recovery of data, changing user access information, or updating firewall rules or policies to prevent a breach in the future. Without executing this step, the system could still be vulnerable to future security threats. [61]

Lessons Learned

In this step information that has been gathered during this process is used to make future decisions on security. This step is crucial to the ensure that future events are prevented. Using this information to further train admins is critical to the process. This step can also be used to process information that is distributed from other entities who have experienced a security event. [62]

Change management

Change management is a formal process for directing and controlling alterations to the information processing environment. This includes alterations to desktop computers, the network, servers and software. The objectives of change management are to reduce the risks posed by changes to the information processing environment and improve the stability and reliability of the processing environment as changes are made. It is not the objective of change management to prevent or hinder necessary changes from being implemented. [63]

Any change to the information processing environment introduces an element of risk. Even apparently simple changes can have unexpected effects. One of management's many responsibilities is the management of risk. Change management is a tool for managing the risks introduced by changes to the information processing environment. Part of the change management process ensures that changes are not implemented at inopportune times when they may disrupt critical business processes or interfere with other changes being implemented.

Not every change needs to be managed. Some kinds of changes are a part of the everyday routine of information processing and adhere to a predefined procedure, which reduces the overall level of risk to the processing environment. Creating a new user account or deploying a new desktop computer are examples of changes that do not generally require change management. However, relocating user file shares, or upgrading the Email server pose a much higher level of risk to the processing environment and are not a normal everyday activity. The critical first steps in change management are (a) defining change (and communicating that definition) and (b) defining the scope of the change system.

Change management is usually overseen by a change review board composed of representatives from key business areas, security, networking, systems administrators, database administration, application developers, desktop support and the help desk. The tasks of the change review board can be facilitated with the use of automated work flow application. The responsibility of the change review board is to ensure the organization's documented change management procedures are followed. The change management process is as follows [64]

Change management procedures that are simple to follow and easy to use can greatly reduce the overall risks created when changes are made to the information processing environment. Good change management procedures improve the overall quality and success of changes as they are implemented. This is accomplished through planning, peer review, documentation and communication.

ISO/IEC 20000, The Visible OPS Handbook: Implementing ITIL in 4 Practical and Auditable Steps [65] (Full book summary), [66] and Information Technology Infrastructure Library all provide valuable guidance on implementing an efficient and effective change management program information security.

Business continuity

Business continuity management (BCM) concerns arrangements aiming to protect an organization's critical business functions from interruption due to incidents, or at least minimize the effects. BCM is essential to any organization to keep technology and business in line with current threats to the continuation of business as usual. The BCM should be included in an organizations risk analysis plan to ensure that all of the necessary business functions have what they need to keep going in the event of any type of threat to any business function. [67]

It encompasses:

Whereas BCM takes a broad approach to minimizing disaster-related risks by reducing both the probability and the severity of incidents, a disaster recovery plan (DRP) focuses specifically on resuming business operations as quickly as possible after a disaster. A disaster recovery plan, invoked soon after a disaster occurs, lays out the steps necessary to recover critical information and communications technology (ICT) infrastructure. Disaster recovery planning includes establishing a planning group, performing risk assessment, establishing priorities, developing recovery strategies, preparing inventories and documentation of the plan, developing verification criteria and procedure, and lastly implementing the plan. [68]

Laws and regulations

Privacy International 2007 privacy ranking
green: Protections and safeguards
red: Endemic surveillance societies Privacy International 2007 privacy ranking map.png
Privacy International 2007 privacy ranking
green: Protections and safeguards
red: Endemic surveillance societies

Below is a partial listing of governmental laws and regulations in various parts of the world that have, had, or will have, a significant effect on data processing and information security. Important industry sector regulations have also been included when they have a significant impact on information security.

Information security culture

Describing more than simply how security aware employees are, information security culture is the ideas, customs, and social behaviors of an organization that impact information security in both positive and negative ways. [82] Cultural concepts can help different segments of the organization work effectively or work against effectiveness towards information security within an organization. The way employees think and feel about security and the actions they take can have a big impact on information security in organizations. Roer & Petric (2017) identify seven core dimensions of information security culture in organizations: [83]

Andersson and Reimers (2014) found that employees often do not see themselves as part of the organization Information Security "effort" and often take actions that ignore organizational information security best interests. [84] Research shows information security culture needs to be improved continuously. In Information Security Culture from Analysis to Change, authors commented, "It's a never ending process, a cycle of evaluation and change or maintenance." To manage the information security culture, five steps should be taken: pre-evaluation, strategic planning, operative planning, implementation, and post-evaluation. [4]

Sources of standards

The International Organization for Standardization (ISO) is a consortium of national standards institutes from 157 countries, coordinated through a secretariat in Geneva, Switzerland. ISO is the world's largest developer of standards. ISO 15443: "Information technology – Security techniques – A framework for IT security assurance", ISO/IEC 27002: "Information technology – Security techniques – Code of practice for information security management", ISO-20000: "Information technology – Service management", and ISO/IEC 27001: "Information technology – Security techniques – Information security management systems – Requirements" are of particular interest to information security professionals.

The US National Institute of Standards and Technology (NIST) is a non-regulatory federal agency within the U.S. Department of Commerce. The NIST Computer Security Division develops standards, metrics, tests and validation programs as well as publishes standards and guidelines to increase secure IT planning, implementation, management and operation. NIST is also the custodian of the U.S. Federal Information Processing Standard publications (FIPS).

The Internet Society is a professional membership society with more than 100 organizations and over 20,000 individual members in over 180 countries. It provides leadership in addressing issues that confront the future of the internet, and it is the organizational home for the groups responsible for internet infrastructure standards, including the Internet Engineering Task Force (IETF) and the Internet Architecture Board (IAB). The ISOC hosts the Requests for Comments (RFCs) which includes the Official Internet Protocol Standards and the RFC-2196 Site Security Handbook.

The Information Security Forum (ISF) is a global nonprofit organization of several hundred leading organizations in financial services, manufacturing, telecommunications, consumer goods, government, and other areas. It undertakes research into information security practices and offers advice in its biannual Standard of Good Practice and more detailed advisories for members.

The Institute of Information Security Professionals (IISP) is an independent, non-profit body governed by its members, with the principal objective of advancing the professionalism of information security practitioners and thereby the professionalism of the industry as a whole. The institute developed the IISP Skills Framework. This framework describes the range of competencies expected of information security and information assurance professionals in the effective performance of their roles. It was developed through collaboration between both private and public sector organizations and world-renowned academics and security leaders. [85]

The German Federal Office for Information Security (in German Bundesamt für Sicherheit in der Informationstechnik (BSI)) BSI-Standards 100-1 to 100-4 are a set of recommendations including "methods, processes, procedures, approaches and measures relating to information security". [86] The BSI-Standard 100-2 IT-Grundschutz Methodology describes how information security management can be implemented and operated. The standard includes a very specific guide, the IT Baseline Protection Catalogs (also known as IT-Grundschutz Catalogs). Before 2005, the catalogs were formerly known as "IT Baseline Protection Manual". The Catalogs are a collection of documents useful for detecting and combating security-relevant weak points in the IT environment (IT cluster). The collection encompasses as of September 2013 over 4,400 pages with the introduction and catalogs. The IT-Grundschutz approach is aligned with to the ISO/IEC 2700x family.

The European Telecommunications Standards Institute standardized a catalog of information security indicators, headed by the Industrial Specification Group (ISG) ISI.

See also

Related Research Articles

Online Business or e-business is any kind of business or commercial transaction that includes sharing information across the internet. Commerce constitutes the exchange of products and services between businesses, groups and individuals and can be seen as one of the essential activities of any business. Electronic commerce focuses on the use of ICT to enable the external activities and relationships of the business with individuals, groups and other businesses, while e-business refers to business with help of the internet. The term "e-business" was coined by IBM's marketing and Internet team in 1996.

Health Insurance Portability and Accountability Act United States federal law concerning health information

The Health Insurance Portability and Accountability Act of 1996 was enacted by the 104th United States Congress and signed by President Bill Clinton in 1996. It was created primarily to modernize the flow of healthcare information, stipulate how Personally Identifiable Information maintained by the healthcare and healthcare insurance industries should be protected from fraud and theft, and address limitations on healthcare insurance coverage.

In computer security, a vulnerability is a weakness which can be exploited by a threat actor, such as an attacker, to perform unauthorized actions within a computer system. To exploit a vulnerability, an attacker must have at least one applicable tool or technique that can connect to a system weakness. In this frame, vulnerability is also known as the attack surface.

Federal Information Security Management Act of 2002 United States Law

The Federal Information Security Modernization Act of 2002 is a United States federal law enacted in 2002 as Title III of the E-Government Act of 2002. The act recognized the importance of information security to the economic and national security interests of the United States. The act requires each federal agency to develop, document, and implement an agency-wide program to provide information security for the information and information systems that support the operations and assets of the agency, including those provided or managed by another agency, contractor, or other source.

An information technology audit, or information systems audit, is an examination of the management controls within an Information technology (IT) infrastructure. The evaluation of obtained evidence determines if the information systems are safeguarding assets, maintaining data integrity, and operating effectively to achieve the organization's goals or objectives. These reviews may be performed in conjunction with a financial statement audit, internal audit, or other form of attestation engagement.

In business and accounting, information technology controls are specific activities performed by persons or systems designed to ensure that business objectives are met. They are a subset of an enterprise's internal control. IT control objectives relate to the confidentiality, integrity, and availability of data and the overall management of the IT function of the business enterprise. IT controls are often described in two categories: IT general controls (ITGC) and IT application controls. ITGC include controls over the Information Technology (IT) environment, computer operations, access to programs and data, program development and program changes. IT application controls refer to transaction processing controls, sometimes called "input-processing-output" controls. Information technology controls have been given increased prominence in corporations listed in the United States by the Sarbanes-Oxley Act. The COBIT Framework is a widely used framework promulgated by the IT Governance Institute, which defines a variety of ITGC and application control objectives and recommended evaluation approaches. IT departments in organizations are often led by a Chief Information Officer (CIO), who is responsible for ensuring effective information technology controls are utilized.

McCumber cube

In 1991, John McCumber created a model framework for establishing and evaluating information security programs, now known as The McCumber Cube. This security model is depicted as a three-dimensional Rubik's Cube-like grid.

ITIL security management describes the structured fitting of security into an organization. ITIL security management is based on the ISO 27001 standard. "ISO/IEC 27001:2005 covers all types of organizations. ISO/IEC 27001:2005 specifies the requirements for establishing, implementing, operating, monitoring, reviewing, maintaining and improving a documented Information Security Management System within the context of the organization's overall business risks. It specifies requirements for the implementation of security controls customized to the needs of individual organizations or parts thereof. ISO/IEC 27001:2005 is designed to ensure the selection of adequate and proportionate security controls that protect information assets and give confidence to interested parties."

Certified Information Technology Professional (CITP) is a professional certification for Certified Information Technology Professionals The CITP credential recognizes technical expertise across a wide range of business-technology practice areas.

Information assurance (IA) is the practice of assuring information and managing risks related to the use, processing, storage, and transmission of information or data and the systems and processes used for those purposes. Information assurance includes protection of the integrity, availability, authenticity, non-repudiation and confidentiality of user data. It uses physical, technical, and administrative controls to accomplish these tasks. While focused predominantly on information in digital form, the full range of IA encompasses not only digital, but also analog or physical form. These protections apply to data in transit, both physical and electronic forms, as well as data at rest in various types of physical and electronic storage facilities. IA is best thought of as a superset of information security, and as the business outcome of information risk management.

Security controls are safeguards or countermeasures to avoid, detect, counteract, or minimize security risks to physical property, information, computer systems, or other assets.

Information security management (ISM) describes controls that an organization needs to implement to ensure that it is sensibly protecting the confidentiality, availability, and integrity of assets from threats and vulnerabilities. By extension, ISM includes information risk management, a process which involves the assessment of the risks an organization must deal with in the management and protection of assets, as well as the dissemination of the risks to all appropriate stakeholders. This of course requires proper asset identification and valuation steps, including evaluating the value of confidentiality, integrity, availability, and replacement of assets. As part of information security management, an organization may implement an information security management system and other best practices found in the ISO/IEC 27001, ISO/IEC 27002, and ISO/IEC 27035 standards on information security.

ISO/IEC 27002 is an information security standard published by the International Organization for Standardization (ISO) and by the International Electrotechnical Commission (IEC), titled Information technology – Security techniques – Code of practice for information security controls.

Information technology risk, IT risk, IT-related risk, or cyber risk is any risk related to information technology. While information has long been appreciated as a valuable and important asset, the rise of the knowledge economy and the Digital Revolution has led to organizations becoming increasingly dependent on information, information processing and especially IT. Various events or incidents that compromise IT in some way can therefore cause adverse impacts on the organization's business processes or mission, ranging from inconsequential to catastrophic in scale.

IT general controls (ITGC) are controls that apply to all systems, components, processes, and data for a given organization or information technology (IT) environment. The objectives of ITGCs are to ensure the proper development and implementation of applications, as well as the integrity of programs, data files, and computer operations.

NIST Special Publication 800-53 provides a catalog of security and privacy controls for all U.S. federal information systems except those related to national security. It is published by the National Institute of Standards and Technology, which is a non-regulatory agency of the United States Department of Commerce. NIST develops and issues standards, guidelines, and other publications to assist federal agencies in implementing the Federal Information Security Modernization Act of 2014 (FISMA) and to help with managing cost effective programs to protect their information and information systems.

Cloud computing security or, more simply, cloud security refers to a broad set of policies, technologies, applications, and controls utilized to protect virtualized IP, data, applications, services, and the associated infrastructure of cloud computing. It is a sub-domain of computer security, network security, and, more broadly, information security.

Security service is a service, provided by a layer of communicating open systems, which ensures adequate security of the systems or of data transfers as defined by ITU-T X.800 Recommendation.
X.800 and ISO 7498-2 are technically aligned. This model is widely recognized

IT risk management

IT risk management is the application of risk management methods to information technology in order to manage IT risk, i.e.:

The NIST Cybersecurity Framework provides a policy framework of computer security guidance for how private sector organizations in the United States can assess and improve their ability to prevent, detect, and respond to cyber attacks. The framework has been translated to many languages and is used by the governments of Japan and Israel, among others. It "provides a high level taxonomy of cybersecurity outcomes and a methodology to assess and manage those outcomes." Version 1.0 was published by the US National Institute of Standards and Technology in 2014, originally aimed at operators of critical infrastructure. It is being used by a wide range of businesses and organizations and helps shift organizations to be proactive about risk management. In 2017, a draft version of the framework, version 1.1, was circulated for public comment. Version 1.1 was announced and made publicly available on April 16, 2018. Version 1.1 is still compatible with version 1.0. The changes include guidance on how to perform self-assessments, additional detail on supply chain risk management and guidance on how to interact with supply chain stakeholders.

References

  1. 1 2 44 U.S.C.   § 3542(b)(1)
  2. 1 2 3 4 5 6 Andress, J. (2014). The Basics of Information Security: Understanding the Fundamentals of InfoSec in Theory and Practice. Syngress. p. 240. ISBN   9780128008126.
  3. "What is Information Security? (with pictures)". wiseGEEK. Retrieved 2017-10-06.
  4. 1 2 3 Schlienger, Thomas; Teufel, Stephanie (December 2003). "Information security culture - from analysis to change". South African Computer Society (SAICSIT). 2003 (31): 46–52. hdl:10520/EJC27949.
  5. 1 2 Samonas, S.; Coss, D. (2014). "The CIA Strikes Back: Redefining Confidentiality, Integrity and Availability in Security". Journal of Information System Security. 10 (3): 21–45.
  6. "Gartner Says Digital Disruptors Are Impacting All Industries; Digital KPIs Are Crucial to Measuring Success". Gartner. 2 October 2017. Retrieved 25 January 2018.
  7. "Gartner Survey Shows 42 Percent of CEOs Have Begun Digital Business Transformation". Gartner. 24 April 2017. Retrieved 25 January 2018.
  8. "Information Security Qualifications Fact Sheet" (PDF). IT Governance. Retrieved 16 March 2018.
  9. Stewart, James (2012). CISSP Study Guide. Canada: John Wiley & Sons, Inc. pp. 255–257. ISBN   978-1-118-31417-3.
  10. Enge, Eric. "Stone Temple". Cell phones
  11. Gordon, Lawrence; Loeb, Martin (November 2002). "The Economics of Information Security Investment". ACM Transactions on Information and System Security. 5 (4): 438–457. doi:10.1145/581271.581274.
  12. Stewart, James (2012). CISSP Certified Information Systems Security Professional Study Guide Sixth Edition. Canada: John Wiley & Sons, Inc. pp. 255–257. ISBN   978-1-118-31417-3.
  13. Suetonius Tranquillus, Gaius (2008). Lives of the Caesars (Oxford World's Classics). New York: Oxford University Press. p. 28. ISBN   978-0-19-953756-3.
  14. Singh, Simon (2000). The Code Book. Anchor. pp. 289–290. ISBN   978-0-385-49532-5.
  15. Johnson, John (1997). The Evolution of British Sigint: 1653–1939. Her Majesty's Stationery Office. ASIN   B00GYX1GX2.
  16. Ruppert, K. (2011). "Official Secrets Act (1889; New 1911; Amended 1920, 1939, 1989)". In Hastedt, G.P. (ed.). Spies, Wiretaps, and Secret Operations: An Encyclopedia of American Espionage. 2. ABC-CLIO. pp. 589–590. ISBN   9781851098088.
  17. 1 2 Sebag–Montefiore, H. (2011). Enigma: The Battle for the Code. Orion. p. 576. ISBN   9781780221236.
  18. DeNardis, L. (2007). "Chapter 24: A History of Internet Security". In de Leeuw, K.M.M.; Bergstra, J. (eds.). The History of Information Security: A Comprehensive Handbook. Elsevier. pp. 681–704. ISBN   9780080550589.
  19. 1 2 Cherdantseva Y. and Hilton J.: "Information Security and Information Assurance. The Discussion about the Meaning, Scope and Goals". In: Organizational, Legal, and Technological Dimensions of Information System Administrator. Almeida F., Portela, I. (eds.). IGI Global Publishing. (2013)
  20. ISO/IEC 27000:2009 (E). (2009). Information technology – Security techniques – Information security management systems – Overview and vocabulary. ISO/IEC.
  21. Committee on National Security Systems: National Information Assurance (IA) Glossary, CNSS Instruction No. 4009, 26 April 2010.
  22. ISACA. (2008). Glossary of terms, 2008. Retrieved from http://www.isaca.org/Knowledge-Center/Documents/Glossary/glossary.pdf
  23. Pipkin, D. (2000). Information security: Protecting the global enterprise. New York: Hewlett-Packard Company.
  24. B., McDermott, E., & Geer, D. (2001). Information security is information risk management. In Proceedings of the 2001 Workshop on New Security Paradigms NSPW ‘01, (pp. 97 – 104). ACM. doi:10.1145/508171.508187
  25. Anderson, J. M. (2003). "Why we need a new definition of information security". Computers & Security. 22 (4): 308–313. doi:10.1016/S0167-4048(03)00407-3.
  26. Venter, H. S.; Eloff, J. H. P. (2003). "A taxonomy for information security technologies". Computers & Security. 22 (4): 299–307. doi:10.1016/S0167-4048(03)00406-1.
  27. Perrin, Chad. "The CIA Triad" . Retrieved 31 May 2012.
  28. 1 2 "Engineering Principles for Information Technology Security" (PDF). csrc.nist.gov.
  29. "oecd.org" (PDF). Archived from the original (PDF) on May 16, 2011. Retrieved 2014-01-17.
  30. Slade, Rob. "(ICS)2 Blog".
  31. Aceituno, Vicente. "Open Information Security Maturity Model" . Retrieved 12 February 2017.
  32. http://www.dartmouth.edu/~gvc/ThreeTenetsSPIE.pdf
  33. Hughes, Jeff; Cybenko, George (21 June 2018). "Quantitative Metrics and Risk Assessment: The Three Tenets Model of Cybersecurity". Technology Innovation Management Review. 3 (8).
  34. Teplow, Lily. "Are Your Clients Falling for These IT Security Myths? [CHART]". continuum.net.
  35. Beckers, K. (2015). Pattern and Security Requirements: Engineering-Based Establishment of Security Standards. Springer. p. 100. ISBN   9783319166643.
  36. Boritz, J. Efrim (2005). "IS Practitioners' Views on Core Concepts of Information Integrity". International Journal of Accounting Information Systems. Elsevier. 6 (4): 260–279. doi:10.1016/j.accinf.2005.07.001.
  37. Loukas, G.; Oke, G. (September 2010) [August 2009]. "Protection Against Denial of Service Attacks: A Survey" (PDF). Comput. J. 53 (7): 1020–1037. doi:10.1093/comjnl/bxp078.
  38. McCarthy, C. (2006). "Digital Libraries: Security and Preservation Considerations". In Bidgoli, H. (ed.). Handbook of Information Security, Threats, Vulnerabilities, Prevention, Detection, and Management. 3. John Wiley & Sons. pp. 49–76. ISBN   9780470051214.
  39. ISACA (2006). CISA Review Manual 2006. Information Systems Audit and Control Association. p. 85. ISBN   978-1-933284-15-6.
  40. Spagnoletti, Paolo; Resca A. (2008). "The duality of Information Security Management: fighting against predictable and unpredictable threats". Journal of Information System Security. 4 (3): 46–62.
  41. Grama, J.L. (2014). Legal Issues in Information Security. Jones & Bartlett Learning. p. 550. ISBN   9781284151046.
  42. Kiountouzis, E.A.; Kokolakis, S.A. (1996-05-31). Information systems security: facing the information society of the 21st century. London: Chapman & Hall, Ltd. ISBN   978-0-412-78120-9.
  43. Newsome, B. (2013). A Practical Introduction to Security and Risk Management. SAGE Publications. p. 208. ISBN   9781483324852.
  44. 1 2 Whitman, M.E.; Mattord, H.J. (2016). Management of Information Security (5th ed.). Cengage Learning. p. 592. ISBN   9781305501256.
  45. "NIST SP 800-30 Risk Management Guide for Information Technology Systems" (PDF). Retrieved 2014-01-17.
  46. Johnson, L. (2015). Security Controls Evaluation, Testing, and Assessment Handbook. Syngress. p. 678. ISBN   9780128025642.
  47. Ransome, J.; Misra, A. (2013). Core Software Security: Security at the Source. CRC Press. pp. 40–41. ISBN   9781466560956.
  48. "Segregation of Duties Control matrix". ISACA. 2008. Archived from the original on 3 July 2011. Retrieved 2008-09-30.
  49. Kakareka, A. (2013). "Chapter 31: What is Vulnerability Assessment?". In Vacca, J.R. (ed.). Computer and Information Security Handbook (2nd ed.). Elsevier. pp. 541–552. ISBN   9780123946126.
  50. 1 2 Bayuk, J. (2009). "Chapter 4: Information Classification". In Axelrod, C.W.; Bayuk, J.L.; Schutzer, D. (eds.). Enterprise Information Security and Privacy. Artech House. pp. 59–70. ISBN   9781596931916.
  51. "Business Model for Information Security (BMIS)". ISACA. Retrieved 25 January 2018.
  52. Akpeninor, James Ohwofasa (2013). Modern Concepts of Security. Bloomington, IN: AuthorHouse. p. 135. ISBN   978-1-4817-8232-6 . Retrieved 18 January 2018.
  53. "The Use of Audit Trails to Monitor Key Networks and Systems Should Remain Part of the Computer Security Material Weakness". www.treasury.gov. Retrieved 2017-10-06.
  54. Vallabhaneni, S.R. (2008). Corporate Management, Governance, and Ethics Best Practices. John Wiley & Sons. p. 288. ISBN   9780470255803.
  55. Shon Harris (2003). All-in-one CISSP Certification Exam Guide (2nd ed.). Emeryville, California: McGraw-Hill/Osborne. ISBN   978-0-07-222966-0.
  56. "The Duty of Care Risk Analysis Standard". DoCRA.
  57. Westby, J.R.; Allen, J.H. (August 2007). "Governing for Enterprise Security (GES) Implementation Guide" (PDF). Software Engineering Institute. Retrieved 25 January 2018.
  58. "Iltanget.org". iltanet.org. 2015.
  59. 1 2 Leonard, Wills (2019). A Brief Guide to Handling a Cyber Incident. <http://search.ebscohost.com.rcbc.idm.oclc.org/login.aspx?direct=true&db=aph&AN=136883429&site=ehost-live>. pp. 17–18.
  60. Erlanger, Leon (2002). Defensive Strategies. PC Magazine. p. 70.
  61. 1 2 3 "Computer Security Incident Handling Guide" (PDF). Nist.gov. 2012.
  62. He, Ying (December 1, 2017). "Challenges of Information Security Incident Learning: An Industrial Case Study in a Chinese Healthcare Organization". Informatics for Health and Social Care. 42: 394–395 via Ebscohost.
  63. Campbell, T. (2016). "Chapter 14: Secure Systems Development". Practical Information Security Management: A Complete Guide to Planning and Implementation. Apress. p. 218. ISBN   9781484216859.
  64. Taylor, J. (2008). "Chapter 10: Understanding the Project Change Process". Project Scheduling and Cost Control: Planning, Monitoring and Controlling the Baseline. J. Ross Publishing. pp. 187–214. ISBN   9781932159110.
  65. itpi.org Archived December 10, 2013, at the Wayback Machine
  66. "book summary of The Visible Ops Handbook: Implementing ITIL in 4 Practical and Auditable Steps". wikisummaries.org. Retrieved 2016-06-22.
  67. Hotchkiss, Stuart. Business Continuity Management : In Practice, British Informatics Society Limited, 2010. ProQuest Ebook Central, https://ebookcentral.proquest.com/lib/pensu/detail.action?docID=634527.
  68. "The Disaster Recovery Plan". Sans Institute. Retrieved 7 February 2012.
  69. "Data Protection Act 1998". legislation.gov.uk. The National Archives. Retrieved 25 January 2018.
  70. "Computer Misuse Act 1990". legislation.gov.uk. The National Archives. Retrieved 25 January 2018.
  71. "Directive 2006/24/EC of the European Parliament and of the Council of 15 March 2006". EUR-Lex. European Union. Retrieved 25 January 2018.
  72. Codified at 20 U.S.C.   § 1232g, with implementing regulations in title 34, part 99 of the Code of Federal Regulations
  73. "Audit Booklet". Information Technology Examination Handbook. FFIEC. Retrieved 25 January 2018.
  74. "Public Law 104 - 191 - Health Insurance Portability and Accountability Act of 1996". U.S. Government Publishing Office. Retrieved 25 January 2018.
  75. "Public Law 106 - 102 - Gramm–Leach–Bliley Act of 1999" (PDF). U.S. Government Publishing Office. Retrieved 25 January 2018.
  76. "Public Law 107 - 204 - Sarbanes-Oxley Act of 2002". U.S. Government Publishing Office. Retrieved 25 January 2018.
  77. "Payment Card Industry (PCI) Data Security Standard: Requirements and Security Assessment Procedures - Version 3.2" (PDF). Security Standards Council. April 2016. Retrieved 25 January 2018.
  78. "Security Breach Notification Laws". National Conference of State Legislatures. 12 April 2017. Retrieved 25 January 2018.
  79. "Personal Information Protection and Electronic Documents Act" (PDF). Canadian Minister of Justice. Retrieved 25 January 2018.
  80. "Regulation for the Assurance of Confidentiality in Electronic Communications" (PDF). Government Gazette of the Hellenic Republic. Hellenic Authority for Communication Security and Privacy. 17 November 2011. Retrieved 25 January 2018.
  81. "Αριθμ. απόφ. 205/2013" (PDF). Government Gazette of the Hellenic Republic. Hellenic Authority for Communication Security and Privacy. 15 July 2013. Retrieved 25 January 2018.
  82. https://securitycultureframework.net (09/04/2014). "Definition of Security Culture". The Security Culture Framework.Check date values in: |date= (help)
  83. Roer, Kai; Petric, Gregor (2017). The 2017 Security Culture Report - In depth insights into the human factor. CLTRe North America, Inc. pp. 42–43. ISBN   978-1544933948.
  84. Anderson, D., Reimers, K. and Barretto, C. (March 2014). Post-Secondary Education Network Security: Results of Addressing the End-User Challenge.publication date Mar 11, 2014 publication description INTED2014 (International Technology, Education, and Development Conference)
  85. "IISP Skills Framework".
  86. "BSI-Standards". BSI. Retrieved 29 November 2013.

Further reading

Bibliography