Zombie (computing)

Last updated

In computing, a zombie is a computer connected to the Internet that has been compromised by a hacker via a computer virus, computer worm, or trojan horse program and can be used to perform malicious tasks under the remote direction of the hacker. Zombie computers often coordinate together in a botnet controlled by the hacker, and are used for activities such as spreading e-mail spam and launching distributed denial-of-service attacks (DDoS attacks) against web servers. Most victims are unaware that their computers have become zombies. The concept is similar to the zombie of Haitian Voodoo folklore, which refers to a corpse resurrected by a sorcerer via magic and enslaved to the sorcerer's commands, having no free will of its own. [1] A coordinated DDoS attack by multiple botnet machines also resembles a "zombie horde attack", as depicted in fictional zombie films.

Contents

(1) Spammer's web site (2) Spammer (3) Spamware (4) Infected computers (5) Virus or trojan (6) Mail servers (7) Users (8) Web traffic Circle of spam.svg
(1) Spammer's web site (2) Spammer (3) Spamware (4) Infected computers (5) Virus or trojan (6) Mail servers (7) Users (8) Web traffic

Advertising

Zombie computers have been used extensively to send e-mail spam; as of 2005, an estimated 5080% of all spam worldwide was sent by zombie computers. [2] This allows spammers to avoid detection and presumably reduces their bandwidth costs, since the owners of zombies pay for their own bandwidth. This spam also greatly increases the spread of Trojan horses, as Trojans are not self-replicating. They rely on the movement of e-mails or spam to grow, whereas worms can spread by other means. [3] For similar reasons, zombies are also used to commit click fraud against sites displaying pay-per-click advertising. Others can host phishing or money mule recruiting websites.

Distributed denial-of-service attacks

Zombies can be used to conduct distributed denial-of-service (DDoS) attacks, a term which refers to the orchestrated flooding of target websites by large numbers of computers at once. The large number of Internet users making simultaneous requests of a website's server is intended to result in crashing and the prevention of legitimate users from accessing the site. [4] A variant of this type of flooding is known as distributed degradation-of-service. Committed by "pulsing" zombies, distributed degradation-of-service is the moderated and periodical flooding of websites intended to slow down rather than crash a victim site. The effectiveness of this tactic springs from the fact that intense flooding can be quickly detected and remedied, but pulsing zombie attacks and the resulting slow-down in website access can go unnoticed for months and even years. [5]

The computing facilitated by the Internet of Things (IoT) has been productive for modern-day usage, yet it has played a significant role in the increase in web attacks. The potential of IoT enables every device to communicate efficiently, but this also intensifies the need for policy enforcement regarding security threats. Among these threats, Distributed Denial-of-Service (DDoS) attacks are prevalent. Research has been conducted to study the impact of such attacks on IoT networks and to develop compensating provisions for defense. [6] Consultation services specialized in IoT security, such as those offered by IoT consulting firms [ dead link ], play a vital role in devising comprehensive strategies to safeguard IoT ecosystems from cyber threats.

Notable incidents of distributed denial- and degradation-of-service attacks in the past include the attack upon the SPEWS service in 2003, and the one against Blue Frog service in 2006. In 2000, several prominent Web sites (Yahoo, eBay, etc.) were clogged to a standstill by a distributed denial of service attack mounted by 'MafiaBoy', a Canadian teenager.

Smartphones

Beginning in July 2009, similar botnet capabilities have also emerged for the growing smartphone market. Examples include the July 2009 in the "wild" release of the Sexy Space text message worm, the world's first botnet capable SMS worm, which targeted the Symbian operating system in Nokia smartphones. Later that month, researcher Charlie Miller revealed a proof of concept text message worm for the iPhone at Black Hat Briefings. Also in July, United Arab Emirates consumers were targeted by the Etisalat BlackBerry spyware program. In the 2010s, the security community is divided as to the real world potential of mobile botnets. But in an August 2009 interview with The New York Times , cyber security consultant Michael Gregg summarized the issue this way: "We are about at the point with [smart]phones that we were with desktops in the '80s." [7]

See also

Related Research Articles

<span class="mw-page-title-main">Computer worm</span> Self-replicating malware program

A computer worm is a standalone malware computer program that replicates itself in order to spread to other computers. It often uses a computer network to spread itself, relying on security failures on the target computer to access it. It will use this machine as a host to scan and infect other computers. When these new worm-invaded computers are controlled, the worm will continue to scan and infect other computers using these computers as hosts, and this behaviour will continue. Computer worms use recursive methods to copy themselves without host programs and distribute themselves based on exploiting the advantages of exponential growth, thus controlling and infecting more and more computers in a short time. Worms almost always cause at least some harm to the network, even if only by consuming bandwidth, whereas viruses almost always corrupt or modify files on a targeted computer.

<span class="mw-page-title-main">Denial-of-service attack</span> Type of cyber-attack

In computing, a denial-of-service attack is a cyber-attack in which the perpetrator seeks to make a machine or network resource unavailable to its intended users by temporarily or indefinitely disrupting services of a host connected to a network. Denial of service is typically accomplished by flooding the targeted machine or resource with superfluous requests in an attempt to overload systems and prevent some or all legitimate requests from being fulfilled. The range of attacks varies widely, spanning from inundating a server with millions of requests to slow its performance, overwhelming a server with a substantial amount of invalid data, to submitting requests with an illegitimate IP address.

<span class="mw-page-title-main">Timeline of computer viruses and worms</span> Computer malware timeline

This timeline of computer viruses and worms presents a chronological timeline of noteworthy computer viruses, computer worms, Trojan horses, similar malware, related research and events.

Linux malware includes viruses, Trojans, worms and other types of malware that affect the Linux family of operating systems. Linux, Unix and other Unix-like computer operating systems are generally regarded as very well-protected against, but not immune to, computer viruses.

<span class="mw-page-title-main">Botnet</span> Collection of compromised internet-connected devices controlled by a third party

A botnet is a group of Internet-connected devices, each of which runs one or more bots. Botnets can be used to perform distributed denial-of-service (DDoS) attacks, steal data, send spam, and allow the attacker to access the device and its connection. The owner can control the botnet using command and control (C&C) software. The word "botnet" is a portmanteau of the words "robot" and "network". The term is usually used with a negative or malicious connotation.

Internet security is a branch of computer security. It encompasses the Internet, browser security, web site security, and network security as it applies to other applications or operating systems as a whole. Its objective is to establish rules and measures to use against attacks over the Internet. The Internet is an inherently insecure channel for information exchange, with high risk of intrusion or fraud, such as phishing, online viruses, trojans, ransomware and worms.

On Internet usage, an email bomb is a form of net abuse that sends large volumes of email to an address to overflow the mailbox, overwhelm the server where the email address is hosted in a denial-of-service attack or as a smoke screen to distract the attention from important email messages indicating a security breach.

<span class="mw-page-title-main">Storm Worm</span> Backdoor Trojan horse found in Windows

The Storm Worm is a phishing backdoor Trojan horse that affects computers using Microsoft operating systems, discovered on January 17, 2007. The worm is also known as:

<span class="mw-page-title-main">Storm botnet</span> Computer botnet

The Storm botnet or Storm Worm botnet was a remotely controlled network of "zombie" computers that had been linked by the Storm Worm, a Trojan horse spread through e-mail spam. At its height in September 2007, the Storm botnet was running on anywhere from 1 million to 50 million computer systems, and accounted for 8% of all malware on Microsoft Windows computers. It was first identified around January 2007, having been distributed by email with subjects such as "230 dead as storm batters Europe," giving it its well-known name. The botnet began to decline in late 2007, and by mid-2008 had been reduced to infecting about 85,000 computers, far less than it had infected a year earlier.

Stefan Savage is an American computer science researcher, currently a Professor in the Systems and Networking Group at the University of California, San Diego. There, he holds the Irwin and Joan Jacobs Chair in Information and Computer Science. Savage is widely cited in computer security, particularly in the areas of email spam, network worms and malware propagation, distributed denial of service (DDOS) mitigation and traceback, automotive hacking and wireless security. He received his undergraduate degree at Carnegie Mellon and his Ph.D. from the University of Washington (2002).

The Rustock botnet was a botnet that operated from around 2006 until March 2011.

The Bredolab botnet, also known by its alias Oficla, was a Russian botnet mostly involved in viral e-mail spam. Before the botnet was eventually dismantled in November 2010 through the seizure of its command and control servers, it was estimated to consist of millions of zombie computers.

United States of America v. Ancheta is the name of a lawsuit against Jeanson James Ancheta of Downey, California by the U.S. Government and was handled by the United States District Court for the Central District of California. This is the first botnet related prosecution in U.S history.

Virut is a cybercrime malware botnet, operating at least since 2006, and one of the major botnets and malware distributors on the Internet. In January 2013, its operations were disrupted by the Polish organization Naukowa i Akademicka Sieć Komputerowa.

Festi is a rootkit and a botnet also known by its alias of Spamnost, and is mostly involved in email spam and denial of service attacks. It works under operating systems of the Windows family. Autumn of 2009 was the first time Festi came into the view of the companies engaged in the development and sale of antivirus software. At this time it was estimated that the botnet itself consisted of roughly 25.000 infected machines, while having a spam volume capacity of roughly 2.5 billion spam emails a day. Festi showed the greatest activity in 2011-2012. More recent estimates - dated August 2012 - display that the botnet is sending spam from 250,000 unique IP addresses, a quarter of the total amount of one million detected IP's sending spam mails. The main functionality of botnet Festi is spam sending and implementation of cyberattacks like "distributed denial of service".

<span class="mw-page-title-main">Microsoft Digital Crimes Unit</span> Internet security organization

The Microsoft Digital Crimes Unit (DCU) is a Microsoft sponsored team of international legal and internet security experts employing the latest tools and technologies to stop or interfere with cybercrime and cyber threats. The Microsoft Digital Crimes Unit was assembled in 2008. In 2013, a Cybercrime center for the DCU was opened in Redmond, Washington. There are about 100 members of the DCU stationed just in Redmond, Washington at the original Cybercrime Center. Members of the DCU include lawyers, data scientists, investigators, forensic analysts, and engineers. The DCU has international offices located in major cities such as: Beijing, Berlin, Bogota, Delhi, Dublin, Hong Kong, Sydney, and Washington, D.C. The DCU's main focuses are child protection, copyright infringement and malware crimes. The DCU must work closely with law enforcement to ensure the perpetrators are punished to the full extent of the law. The DCU has taken down many major botnets such as the Citadel, Rustock, and Zeus. Around the world malware has cost users about $113 billion and the DCU's jobs is to shut them down in accordance with the law.

Dorkbot is a family of malware worms that spreads through instant messaging, USB drives, websites or social media channels like Facebook. Code Shikara is a computer worm, related to the Dorkbot family, that attacks through social engineering. Particularly prevalent in 2015, Dorkbot-infected systems were variously used to send spam, participate in DDoS attacks, or harvest users' credentials.

BASHLITE is malware which infects Linux systems in order to launch distributed denial-of-service attacks (DDoS). Originally it was also known under the name Bashdoor, but this term now refers to the exploit method used by the malware. It has been used to launch attacks of up to 400 Gbps.

Mirai is malware that turns networked devices running Linux into remotely controlled bots that can be used as part of a botnet in large-scale network attacks. It primarily targets online consumer devices such as IP cameras and home routers. The Mirai botnet was first found in August 2016 by MalwareMustDie, a white hat malware research group, and has been used in some of the largest and most disruptive distributed denial of service (DDoS) attacks, including an attack on 20 September 2016 on computer security journalist Brian Krebs' website, an attack on French web host OVH, and the October 2016 DDoS attacks on Dyn. According to a chat log between Anna-senpai and Robert Coelho, Mirai was named after the 2011 TV anime series Mirai Nikki.

<span class="mw-page-title-main">MalwareMustDie</span> Whitehat security research workgroup

MalwareMustDie, NPO is a whitehat security research workgroup that was launched in August 2012. MalwareMustDie is a registered nonprofit organization as a medium for IT professionals and security researchers gathered to form a work flow to reduce malware infection in the internet. The group is known for their malware analysis blog. They have a list of Linux malware research and botnet analysis that they have completed. The team communicates information about malware in general and advocates for better detection for Linux malware.

References

  1. "Zombie - Port Security". August 3, 2021.
  2. Tom Spring (June 20, 2005). "Spam Slayer: Slaying Spam-Spewing Zombie PCs". PC World. Archived from the original on July 16, 2017. Retrieved December 19, 2015.
  3. White, Jay D. (2007). Managing Information in the Public Sector. M.E. Sharpe. p. 221. ISBN   978-0-7656-1748-4.
  4. Weisman, Steve (2008). The Truth about Avoiding Scams . FT Press. p.  201. ISBN   978-0-13-233385-6.
  5. Schwabach, Aaron (2006). Internet and the Law. ABC-CLIO. p. 325. ISBN   1-85109-731-7.
  6. Lohachab, Ankur; Karambir, Bidhan (September 1, 2018). "Critical Analysis of DDoS—An Emerging Security Threat over IoT Networks". Journal of Communications and Information Networks. 3 (3): 57–78. doi:10.1007/s41650-018-0022-5. ISSN   2509-3312. S2CID   52924506.
  7. Furchgott, Roy (August 14, 2009). "Phone Hacking Threat Is Low, but it Exists". Gadgetwise Blog. New York Times. Archived from the original on July 16, 2017. Retrieved July 16, 2017.