Physical information security

Last updated

Physical information security is the intersection or common ground between physical security and information security. It primarily concerns the protection of tangible information-related assets such as computer systems and storage media against physical, real-world threats such as unauthorized physical access, theft, fire and flood. It typically involves physical controls such as protective barriers and locks, uninterruptible power supplies, and shredders. Information security controls in the physical domain complement those in the logical domain (such as encryption), and procedural or administrative controls (such as information security awareness and compliance with policies and laws).

Contents

Background

Asset are inherently valuable and yet vulnerable to a wide variety of threats, both malicious (e.g. theft, arson) and accidental/natural (e.g. lost property, bush fire). If threats materialize and exploit those vulnerabilities causing incidents, there are likely to be adverse impacts on the organizations or individuals who legitimately own and utilize the assets, varying from trivial to devastating in effect. Security controls are intended to reduce the probability or frequency of occurrence and/or the severity of the impacts arising from incidents, thus protecting the value of the assets.

Physical security involves the use of controls such as smoke detectors, fire alarms and extinguishers, along with related laws, regulations, policies and procedures concerning their use. Barriers such as fences, walls and doors are obvious physical security controls, designed to deter or prevent unauthorized physical access to a controlled area, such as a home or office. The moats and battlements of Mediaeval castles are classic examples of physical access controls, as are bank vaults and safes.

Information security controls protect the value of information assets, particularly the information itself (i.e. the intangible information content, data, intellectual property, knowledge etc.) but also computer and telecommunications equipment, storage media (including papers and digital media), cables and other tangible information-related assets (such as computer power supplies). The corporate mantra "Our people are our greatest assets" is literally true in the sense that so-called knowledge workers qualify as extremely valuable, perhaps irreplaceable information assets. Health and safety measures and even medical practice could therefore also be classed as physical information security controls since they protect humans against injuries, diseases and death. This perspective exemplifies the ubiquity and value of information. Modern human society is heavily reliant on information, and information has importance and value at a deeper, more fundamental level. In principle, the subcellular biochemical mechanisms that maintain the accuracy of DNA replication could even be classed as vital information security controls, given that genes are 'the information of life'.

Malicious actors who may benefit from physical access to information assets include computer crackers, corporate spies, and fraudsters. The value of information assets is self-evident in the case of, say, stolen laptops or servers that can be sold-on for cash, but the information content is often far more valuable, for example encryption keys or passwords (used to gain access to further systems and information), trade secrets and other intellectual property (inherently valuable or valuable because of the commercial advantages they confer), and credit card numbers (used to commit identity fraud and further theft). Furthermore, the loss, theft or damage of computer systems, plus power interruptions, mechanical/electronic failures and other physical incidents prevent them being used, typically causing disruption and consequential costs or losses. Unauthorized disclosure of confidential information, and even the coercive threat of such disclosure, can be damaging as we saw in the Sony Pictures Entertainment hack at the end of 2014 and in numerous privacy breach incidents. Even in the absence of evidence that disclosed personal information has actually been exploited, the very fact that it is no longer secured and under the control of its rightful owners is itself a potentially harmful privacy impact. Substantial fines, adverse publicity/reputational damage and other noncompliance penalties and impacts that flow from serious privacy breaches are best avoided, regardless of cause!

Examples of physical attacks to obtain information

There are several ways to obtain information through physical attacks or exploitations. A few examples are described below.

Dumpster diving

Dumpster diving is the practice of searching through trash in the hope of obtaining something valuable such as information carelessly discarded on paper, computer disks or other hardware.

Overt access

Sometimes attackers will simply go into a building and take the information they need. [1] Frequently when using this strategy, an attacker will masquerade as someone who belongs in the situation. They may pose as a copy room employee, remove a document from someone's desk, copy the document, replace the original, and leave with the copied document. Individuals pretending to building maintenance may gain access to otherwise restricted spaces. [2] [3] They might walk right out of the building with a trash bag containing sensitive documents, carrying portable devices or storage media that were left out on desks, or perhaps just having memorized a password on a sticky note stuck to someone's computer screen or called out to a colleague across an open office.

Examples of Physical Information Security Controls

Shredding paper documents prior to their disposal can prevent unintended information leakage. Digital data can be encrypted or securely wiped.

Offices may require visitors to present valid identification cards or valid access keys. Office workers may be required to obey "clear desk" policies, protecting documents and other storage media (including portable IT devices) by tidying them away out of sight (for example in locked drawers, filing cabinets, safes or a Bank vault). Workers may be required to memorize their passwords or use a password manager instead of writing passwords on paper.

Computers are vulnerable to outages caused by power cuts, accidental disconnection, flat batteries, brown-outs, surges, spikes, electrical interference and electronic failures. Physical information security controls to address the associated risks include: fuses, no-break battery-backed power supplies, electrical generators, redundant power sources and cabling, "Do not remove" warning signs on plugs, surge protectors, power quality monitoring, spare batteries, professional design and installation of power circuits plus regular inspections/tests and preventive maintenance.

See also

Related Research Articles

<span class="mw-page-title-main">Computer security</span> Protection of computer systems from information disclosure, theft or damage

Computer security, cybersecurity, digital security or information technology security is the protection of computer systems and networks from attacks by malicious actors that may result in unauthorized information disclosure, theft of, or damage to hardware, software, or data, as well as from the disruption or misdirection of the services they provide.

Information security, sometimes shortened to infosec, is the practice of protecting information by mitigating information risks. It is part of information risk management. It typically involves preventing or reducing the probability of unauthorized or inappropriate access to data or the unlawful use, disclosure, disruption, deletion, corruption, modification, inspection, recording, or devaluation of information. It also involves actions intended to reduce the adverse impacts of such incidents. Protected information may take any form, e.g., electronic or physical, tangible, or intangible. Information security's primary focus is the balanced protection of data confidentiality, integrity, and availability while maintaining a focus on efficient policy implementation, all without hampering organization productivity. This is largely achieved through a structured risk management process that involves:

Security engineering is the process of incorporating security controls into an information system so that the controls become an integral part of the system’s operational capabilities. It is similar to other systems engineering activities in that its primary motivation is to support the delivery of engineering solutions that satisfy pre-defined functional and user requirements, but it has the added dimension of preventing misuse and malicious behavior. Those constraints and restrictions are often asserted as a security policy.

<span class="mw-page-title-main">Paper shredder</span> Device used to cut paper into pieces

A paper shredder is a mechanical device used to cut sheets of paper into either strips or fine particles. Government organizations, businesses, and private individuals use shredders to destroy private, confidential, or otherwise sensitive documents.

Internet security is a branch of computer security. It encompasses the Internet, browser security, web site security, and network security as it applies to other applications or operating systems as a whole. Its objective is to establish rules and measures to use against attacks over the Internet. The Internet is an inherently insecure channel for information exchange, with high risk of intrusion or fraud, such as phishing, online viruses, trojans, ransomware and worms.

Anti-theft systems protect valuables such as vehicles and personal property like wallets, phones, and jewelry. They are also used in retail settings to protect merchandise in the form of security tags and labels. Anti-theft systems include devices such as locks and keys, RFID tags, and GPS locators.

An information security audit is an audit of the level of information security in an organization. It is an independent review and examination of system records, activities, and related documents. These audits are intended to improve the level of information security, avoid improper information security designs, and optimize the efficiency of the security safeguards and security processes. Within the broad scope of auditing information security there are multiple types of audits, multiple objectives for different audits, etc. Most commonly the controls being audited can be categorized as technical, physical and administrative. Auditing information security covers topics from auditing the physical security of data centers to auditing the logical security of databases, and highlights key components to look for and different methods for auditing these areas.

Crimeware is a class of malware designed specifically to automate cybercrime.

Information assurance (IA) is the practice of assuring information and managing risks related to the use, processing, storage, and transmission of information. Information assurance includes protection of the integrity, availability, authenticity, non-repudiation and confidentiality of user data. IA encompasses both digital protections and physical techniques. These methods apply to data in transit, both physical and electronic forms, as well as data at rest. IA is best thought of as a superset of information security, and as the business outcome of information risk management.

ISO/IEC 27002 is an information security standard published by the International Organization for Standardization (ISO) and by the International Electrotechnical Commission (IEC), titled Information security, cybersecurity and privacy protection — Information security controls.

Information technology risk, IT risk, IT-related risk, or cyber risk is any risk relating to information technology. While information has long been appreciated as a valuable and important asset, the rise of the knowledge economy and the Digital Revolution has led to organizations becoming increasingly dependent on information, information processing and especially IT. Various events or incidents that compromise IT in some way can therefore cause adverse impacts on the organization's business processes or mission, ranging from inconsequential to catastrophic in scale.

Cloud computing security or, more simply, cloud security, refers to a broad set of policies, technologies, applications, and controls utilized to protect virtualized IP, data, applications, services, and the associated infrastructure of cloud computing. It is a sub-domain of computer security, network security, and, more broadly, information security.

In computer security a countermeasure is an action, device, procedure, or technique that reduces a threat, vulnerability, or attack, eliminating or preventing it by minimizing the harm it can cause. It can also include discovering and reporting vunerabilities so that corrective action can be taken.

In computer security, a threat is a potential negative action or event facilitated by a vulnerability that results in an unwanted impact to a computer system or application.

<span class="mw-page-title-main">IT risk management</span>

IT risk management is the application of risk management methods to information technology in order to manage IT risk, i.e.:

Cyber crime, or computer crime, refers to any crime that involves a computer and a network. The computer may have been used in the commission of a crime, or it may be the target. Netcrime refers, more precisely, to criminal exploitation of the Internet. Issues surrounding this type of crime have become high-profile, particularly those surrounding hacking, copyright infringement, identity theft, child pornography, and child grooming. There are also problems of privacy when confidential information is lost or intercepted, lawfully or otherwise.

The following outline is provided as an overview of and topical guide to computer security:

Operational technology (OT) is hardware and software that detects or causes a change, through the direct monitoring and/or control of industrial equipment, assets, processes and events. The term has become established to demonstrate the technological and functional differences between traditional information technology (IT) systems and industrial control systems environment, the so-called "IT in the non-carpeted areas".

In cybersecurity, cyber self-defense refers to self-defense against cyberattack. While it generally emphasizes active cybersecurity measures by computer users themselves, cyber self-defense is sometimes used to refer to the self-defense of organizations as a whole, such as corporate entities or entire nations. Surveillance self-defense is a variant of cyber self-defense and largely overlaps with it. Active and passive cybersecurity measures provide defenders with higher levels of cybersecurity, intrusion detection, incident handling and remediation capabilities. Various sectors and organizations are legally obligated to adhere to cyber security standards.

Internet security awareness or Cyber security awareness refers to how much end-users know about the cyber security threats their networks face, the risks they introduce and mitigating security best practices to guide their behavior. End users are considered the weakest link and the primary vulnerability within a network. Since end-users are a major vulnerability, technical means to improve security are not enough. Organizations could also seek to reduce the risk of the human element. This could be accomplished by providing security best practice guidance for end users' awareness of cyber security. Employees could be taught about common threats and how to avoid or mitigate them.

References

  1. Granger, Sarah (2001-12-18). "Social Engineering Fundamentals, Part I: Hacker Tactics". Security Focus. Retrieved 2006-08-27.
  2. "Four Men Arrested for Entering Government Property Under False Pretenses for the Purpose of Committing a Felony". U.S. Department of Justice (Press release). The FBI - New Orleans Division. January 26, 2010. Retrieved October 3, 2010.
  3. "Four Men Plead Guilty to Entering Federal Property Under False Pretenses Entered Senator Mary Landrieu's Office to Secretly Record Office Staff Conversations". Department of Justice Press Release. The FBI - New Orleans Division. May 26, 2010. Archived from the original on May 31, 2010. Retrieved October 3, 2010.