In cryptography, a Caesar cipher, also known as Caesar's cipher, the shift cipher, Caesar's code, or Caesar shift, is one of the simplest and most widely known encryption techniques. It is a type of substitution cipher in which each letter in the plaintext is replaced by a letter some fixed number of positions down the alphabet. For example, with a left shift of 3, D would be replaced by A, E would become B, and so on. [1] The method is named after Julius Caesar, who used it in his private correspondence.
The encryption step performed by a Caesar cipher is often incorporated as part of more complex schemes, such as the Vigenère cipher, and still has modern application in the ROT13 system. As with all single-alphabet substitution ciphers, the Caesar cipher is easily broken and in modern practice offers essentially no communications security.
The transformation can be represented by aligning two alphabets; the cipher alphabet is the plain alphabet rotated left or right by some number of positions. For instance, here is a Caesar cipher using a left rotation of three places, equivalent to a right shift of 23 (the shift parameter is used as the key):
Plain | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cipher | X | Y | Z | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W |
When encrypting, a person looks up each letter of the message in the "plain" line and writes down the corresponding letter in the "cipher" line.
Plaintext: THE QUICK BROWN FOX JUMPS OVER THE LAZY DOG Ciphertext: QEB NRFZH YOLTK CLU GRJMP LSBO QEB IXWV ALD
Deciphering is done in reverse, with a right shift of 3.
The encryption can also be represented using modular arithmetic by first transforming the letters into numbers, according to the scheme, A → 0, B → 1, ..., Z → 25. [2] Encryption of a letter x by a shift n can be described mathematically as, [3]
Decryption is performed similarly,
(Here, "mod" refers to the modulo operation. The value x is in the range 0 to 25, but if x + n or x − n are not in this range then 26 should be added or subtracted.)
The replacement remains the same throughout the message, so the cipher is classed as a type of monoalphabetic substitution , as opposed to polyalphabetic substitution .
The Caesar cipher is named after Julius Caesar, who, according to Suetonius, used it with a shift of three (A becoming D when encrypting, and D becoming A when decrypting) to protect messages of military significance. [4] While Caesar's was the first recorded use of this scheme, other substitution ciphers are known to have been used earlier. [5] [6]
"If he had anything confidential to say, he wrote it in cipher, that is, by so changing the order of the letters of the alphabet, that not a word could be made out. If anyone wishes to decipher these, and get at their meaning, he must substitute the fourth letter of the alphabet, namely D, for A, and so with the others."
His nephew, Augustus, also used the cipher, but with a right shift of one, and it did not wrap around to the beginning of the alphabet:
"Whenever he wrote in cipher, he wrote B for A, C for B, and the rest of the letters on the same principle, using AA for Z."
Evidence exists that Julius Caesar also used more complicated systems, [7] and one writer, Aulus Gellius, refers to a (now lost) treatise on his ciphers:
"There is even a rather ingeniously written treatise by the grammarian Probus concerning the secret meaning of letters in the composition of Caesar's epistles."
— Aulus Gellius, Attic Nights 17.9.1–5
It is unknown how effective the Caesar cipher was at the time; there is no record at that time of any techniques for the solution of simple substitution ciphers. The earliest surviving records date to the 9th-century works of Al-Kindi in the Arab world with the discovery of frequency analysis. [8]
A piece of text encrypted in a Hebrew version of the Caesar cipher is sometimes found on the back of Jewish mezuzah scrolls. When each letter is replaced with the letter before it in the Hebrew alphabet the text translates as "YHWH, our God, YHWH", a quotation from the main part of the scroll. [9] [10]
In the 19th century, the personal advertisements section in newspapers would sometimes be used to exchange messages encrypted using simple cipher schemes. David Kahn (1967) describes instances of lovers engaging in secret communications enciphered using the Caesar cipher in The Times . [11] Even as late as 1915, the Caesar cipher was in use: the Russian army employed it as a replacement for more complicated ciphers which had proved to be too difficult for their troops to master; German and Austrian cryptanalysts had little difficulty in decrypting their messages. [12]
Caesar ciphers can be found today in children's toys such as secret decoder rings. A Caesar shift of thirteen is also performed in the ROT13 algorithm, a simple method of obfuscating text widely found on Usenet and used to obscure text (such as joke punchlines and story spoilers), but not seriously used as a method of encryption. [13]
The Vigenère cipher uses a Caesar cipher with a different shift at each position in the text; the value of the shift is defined using a repeating keyword. [14] If the keyword is as long as the message, is chosen at random, never becomes known to anyone else, and is never reused, this is the one-time pad cipher, proven unbreakable. However the problems involved in using a random key as long as the message make the one-time pad difficult to use in practice. Keywords shorter than the message (e.g., "Complete Victory" used by the Confederacy during the American Civil War), introduce a cyclic pattern that might be detected with a statistically advanced version of frequency analysis. [15]
In April 2006, fugitive Mafia boss Bernardo Provenzano was captured in Sicily partly because some of his messages, clumsily written in a variation of the Caesar cipher, were broken. Provenzano's cipher used numbers, so that "A" would be written as "4", "B" as "5", and so on. [16]
In 2011, Rajib Karim was convicted in the United Kingdom of "terrorism offences" after using the Caesar cipher to communicate with Bangladeshi Islamic activists discussing plots to blow up British Airways planes or disrupt their IT networks. Although the parties had access to far better encryption techniques (Karim himself used PGP for data storage on computer disks), they chose to use their own scheme (implemented in Microsoft Excel), rejecting a more sophisticated code program called Mujahideen Secrets "because 'kaffirs', or non-believers, know about it, so it must be less secure". [17]
Decryption shift | Candidate plaintext |
---|---|
0 | exxegoexsrgi |
1 | dwwdfndwrqfh |
2 | cvvcemcvqpeg |
3 | buubdlbupodf |
4 | attackatonce |
5 | zsszbjzsnmbd |
6 | yrryaiyrmlac |
... | |
23 | haahjrhavujl |
24 | gzzgiqgzutik |
25 | fyyfhpfytshj |
The Caesar cipher can be easily broken even in a ciphertext-only scenario. Since there are only a limited number of possible shifts (25 in English), an attacker can mount a brute force attack by deciphering the message, or part of it, using each possible shift. The correct description will be the one which makes sense as English text. [18] An example is shown on the right for the ciphertext "exxegoexsrgi"; the candidate plaintext for shift four "attackatonce" is the only one which makes sense as English text. Another type of brute force attack is to write out the alphabet beneath each letter of the ciphertext, starting at that letter. Again the correct decryption is the one which makes sense as English text. This technique is sometimes known as "completing the plain component". [19] [20]
Another approach is to match up the frequency distribution of the letters. By graphing the frequencies of letters in the ciphertext, and by knowing the expected distribution of those letters in the original language of the plaintext, a human can easily spot the value of the shift by looking at the displacement of particular features of the graph. This is known as frequency analysis. For example, in the English language the plaintext frequencies of the letters E, T, (usually most frequent), and Q, Z (typically least frequent) are particularly distinctive. [21] Computers can automate this process by assessing the similarity between the observed frequency distribution and the expected distribution. This can be achieved, for instance, through the utilization of the chi-squared statistic [22] or by minimizing the sum of squared errors between the observed and known language distributions. [23]
The unicity distance for the Caesar cipher is about 2, meaning that on average at least two characters of ciphertext are required to determine the key. [24] In rare cases more text may be needed. For example, the words "river" and "arena" can be converted to each other with a Caesar shift, which means they can produce the same ciphertext with different shifts. However, in practice the key can almost certainly be found with at least 6 characters of ciphertext. [25]
With the Caesar cipher, encrypting a text multiple times provides no additional security. This is because two encryptions of, say, shift A and shift B, will be equivalent to a single encryption with shift A + B. In mathematical terms, the set of encryption operations under each possible key forms a group under composition. [26]
{{cite book}}
: CS1 maint: location missing publisher (link)In cryptography, a cipher is an algorithm for performing encryption or decryption—a series of well-defined steps that can be followed as a procedure. An alternative, less common term is encipherment. To encipher or encode is to convert information into cipher or code. In common parlance, "cipher" is synonymous with "code", as they are both a set of steps that encrypt a message; however, the concepts are distinct in cryptography, especially classical cryptography.
Cryptanalysis refers to the process of analyzing information systems in order to understand hidden aspects of the systems. Cryptanalysis is used to breach cryptographic security systems and gain access to the contents of encrypted messages, even if the cryptographic key is unknown.
In cryptography, the one-time pad (OTP) is an encryption technique that cannot be cracked, but requires the use of a single-use pre-shared key that is larger than or equal to the size of the message being sent. In this technique, a plaintext is paired with a random secret key. Then, each bit or character of the plaintext is encrypted by combining it with the corresponding bit or character from the pad using modular addition.
In cryptography, a substitution cipher is a method of encrypting in which units of plaintext are replaced with the ciphertext, in a defined manner, with the help of a key; the "units" may be single letters, pairs of letters, triplets of letters, mixtures of the above, and so forth. The receiver deciphers the text by performing the inverse substitution process to extract the original message.
A chosen-plaintext attack (CPA) is an attack model for cryptanalysis which presumes that the attacker can obtain the ciphertexts for arbitrary plaintexts. The goal of the attack is to gain information that reduces the security of the encryption scheme.
The Vigenère cipher is a method of encrypting alphabetic text where each letter of the plaintext is encoded with a different Caesar cipher, whose increment is determined by the corresponding letter of another text, the key.
In cryptography, the tabula recta is a square table of alphabets, each row of which is made by shifting the previous one to the left. The term was invented by the German author and monk Johannes Trithemius in 1508, and used in his Trithemius cipher.
In cryptography, coincidence counting is the technique of putting two texts side-by-side and counting the number of times that identical letters appear in the same position in both texts. This count, either as a ratio of the total or normalized by dividing by the expected count for a random source model, is known as the index of coincidence, or IC or IOC or IoC for short.
In cryptanalysis, frequency analysis is the study of the frequency of letters or groups of letters in a ciphertext. The method is used as an aid to breaking classical ciphers.
The Playfair cipher or Playfair square or Wheatstone–Playfair cipher is a manual symmetric encryption technique and was the first literal digram substitution cipher. The scheme was invented in 1854 by Charles Wheatstone, but bears the name of Lord Playfair for promoting its use.
In cryptography, ciphertext or cyphertext is the result of encryption performed on plaintext using an algorithm, called a cipher. Ciphertext is also known as encrypted or encoded information because it contains a form of the original plaintext that is unreadable by a human or computer without the proper cipher to decrypt it. This process prevents the loss of sensitive information via hacking. Decryption, the inverse of encryption, is the process of turning ciphertext into readable plaintext. Ciphertext is not to be confused with codetext because the latter is a result of a code, not a cipher.
The affine cipher is a type of monoalphabetic substitution cipher, where each letter in an alphabet is mapped to its numeric equivalent, encrypted using a simple mathematical function, and converted back to a letter. The formula used means that each letter encrypts to one other letter, and back again, meaning the cipher is essentially a standard substitution cipher with a rule governing which letter goes to which. As such, it has the weaknesses of all substitution ciphers. Each letter is enciphered with the function (ax + b) mod 26, where b is the magnitude of the shift.
In cryptography, the ADFGVX cipher was a manually applied field cipher used by the Imperial German Army during World War I. It was used to transmit messages secretly using wireless telegraphy. ADFGVX was in fact an extension of an earlier cipher called ADFGX which was first used on 1 March 1918 on the German Western Front. ADFGVX was applied from 1 June 1918 on both the Western Front and Eastern Front.
In cryptography, a classical cipher is a type of cipher that was used historically but for the most part, has fallen into disuse. In contrast to modern cryptographic algorithms, most classical ciphers can be practically computed and solved by hand. However, they are also usually very simple to break with modern technology. The term includes the simple systems used since Greek and Roman times, the elaborate Renaissance ciphers, World War II cryptography such as the Enigma machine and beyond.
In cryptography, the M-209, designated CSP-1500 by the United States Navy is a portable, mechanical cipher machine used by the US military primarily in World War II, though it remained in active use through the Korean War. The M-209 was designed by Swedish cryptographer Boris Hagelin in response to a request for such a portable cipher machine, and was an improvement of an earlier machine, the C-36.
The four-square cipher is a manual symmetric encryption technique. It was invented by the French cryptographer Felix Delastelle.
The Two-square cipher, also called double Playfair, is a manual symmetric encryption technique. It was developed to ease the cumbersome nature of the large encryption/decryption matrix used in the four-square cipher while still being slightly stronger than the single-square Playfair cipher.
The Alberti Cipher, created in 1467 by Italian architect Leon Battista Alberti, was one of the first polyalphabetic ciphers. In the opening pages of his treatise De componendis cifris he explained how his conversation with the papal secretary Leonardo Dati about a recently developed movable type printing press led to the development of his cipher wheel.
Cryptography, or cryptology, is the practice and study of techniques for secure communication in the presence of adversarial behavior. More generally, cryptography is about constructing and analyzing protocols that prevent third parties or the public from reading private messages. Modern cryptography exists at the intersection of the disciplines of mathematics, computer science, information security, electrical engineering, digital signal processing, physics, and others. Core concepts related to information security are also central to cryptography. Practical applications of cryptography include electronic commerce, chip-based payment cards, digital currencies, computer passwords, and military communications.
The Aristocrat Cipher is a type of monoalphabetic substitution cipher in which plaintext is replaced with ciphertext and encoded into assorted letters, numbers, and symbols based on a keyword. The formatting of these ciphers generally includes a title, letter frequency, keyword indicators, and the encoder's nom de plume. The predecessor to these ciphers stems from the Caesar Cipher around 100. The Aristocrat Cipher also used a transposition of letters to encrypt a message.