Defense in depth (computing)

Last updated

Defense in depth is a concept used in information security in which multiple layers of security controls (defense) are placed throughout an information technology (IT) system. Its intent is to provide redundancy in the event a security control fails or a vulnerability is exploited that can cover aspects of personnel, procedural, technical and physical security for the duration of the system's life cycle.

Contents

Background

The idea behind the defense in depth approach is to defend a system against any particular attack using several independent methods. [1] It is a layering tactic, conceived [2] by the National Security Agency (NSA) as a comprehensive approach to information and electronic security. [3] [4] The term defense in depth in computing is inspired by a military strategy of the same name, but is quite different in concept. The military strategy revolves around having a weaker perimeter defense and intentionally yielding space to buy time, envelop, and ultimately counter-attack an opponent, whereas the information security strategy simply involves multiple layers of controls, but not intentionally ceding ground (cf. honeypot.)

Controls

Defense in depth can be divided into three areas: Physical, Technical, and Administrative. [5]

Physical

Physical controls [3] are anything that physically limits or prevents access to IT systems. Fences, guards, dogs, and CCTV systems and the like.

Technical

Technical controls are hardware or software whose purpose is to protect systems and resources. Examples of technical controls would be disk encryption, File integrity software, and authentication. Hardware technical controls differ from physical controls in that they prevent access to the contents of a system, but not the physical systems themselves.

Administrative

Administrative controls are organization's policies and procedures. Their purpose is to ensure that there is proper guidance available in regard to security and that regulations are met. They include things such as hiring practices, data handling procedures, and security requirements.

Methods

Using more than one of the following layers constitutes an example of defense in depth.

System and application

Network

Physical

Example

In the following scenario a web browser is developed using defense in depth -

See also

Related Research Articles

<span class="mw-page-title-main">Computer security</span> Protection of computer systems from information disclosure, theft or damage

Computer security, cyber security, digital security or information technology security is the protection of computer systems and networks from attacks by malicious actors that may result in unauthorized information disclosure, theft of, or damage to hardware, software, or data, as well as from the disruption or misdirection of the services they provide.

<span class="mw-page-title-main">Secure cryptoprocessor</span> Device used for encryption

A secure cryptoprocessor is a dedicated computer-on-a-chip or microprocessor for carrying out cryptographic operations, embedded in a packaging with multiple physical security measures, which give it a degree of tamper resistance. Unlike cryptographic processors that output decrypted data onto a bus in a secure environment, a secure cryptoprocessor does not output decrypted data or decrypted program instructions in an environment where security cannot always be maintained.

RSA SecurID, formerly referred to as SecurID, is a mechanism developed by RSA for performing two-factor authentication for a user to a network resource.

Internet security is a branch of computer security. It encompasses the Internet, browser security, web site security, and network security as it applies to other applications or operating systems as a whole. Its objective is to establish rules and measures to use against attacks over the Internet. The Internet is an inherently insecure channel for information exchange, with high risk of intrusion or fraud, such as phishing, online viruses, trojans, ransomware and worms.

Vulnerabilities are flaws in a computer system that weaken the overall security of the device/system. Vulnerabilities can be weaknesses in either the hardware itself, or the software that runs on the hardware. Vulnerabilities can be exploited by a threat actor, such as an attacker, to cross privilege boundaries within a computer system. To exploit a vulnerability, an attacker must have at least one applicable tool or technique that can connect to a system weakness. In this frame, vulnerabilities are also known as the attack surface.

An information security audit is an audit of the level of information security in an organization. It is an independent review and examination of system records, activities, and related documents. These audits are intended to improve the level of information security, avoid improper information security designs, and optimize the efficiency of the security safeguards and security processes. Within the broad scope of auditing information security there are multiple types of audits, multiple objectives for different audits, etc. Most commonly the controls being audited can be categorized as technical, physical and administrative. Auditing information security covers topics from auditing the physical security of data centers to auditing the logical security of databases, and highlights key components to look for and different methods for auditing these areas.

<span class="mw-page-title-main">Wireless security</span> Aspect of wireless networks

Wireless security is the prevention of unauthorized access or damage to computers or data using wireless networks, which include Wi-Fi networks. The term may also refer to the protection of the wireless network itself from adversaries seeking to damage the confidentiality, integrity, or availability of the network. The most common type is Wi-Fi security, which includes Wired Equivalent Privacy (WEP) and Wi-Fi Protected Access (WPA). WEP is an old IEEE 802.11 standard from 1997. It is a notoriously weak security standard: the password it uses can often be cracked in a few minutes with a basic laptop computer and widely available software tools. WEP was superseded in 2003 by WPA, a quick alternative at the time to improve security over WEP. The current standard is WPA2; some hardware cannot support WPA2 without firmware upgrade or replacement. WPA2 uses an encryption device that encrypts the network with a 256-bit key; the longer key length improves security over WEP. Enterprises often enforce security using a certificate-based system to authenticate the connecting device, following the standard 802.11X.

In computers, logical access controls are tools and protocols used for identification, authentication, authorization, and accountability in computer information systems. Logical access is often needed for remote access of hardware and is often contrasted with the term "physical access", which refers to interactions with hardware in the physical environment, where equipment is stored and used.

Database security concerns the use of a broad range of information security controls to protect databases against compromises of their confidentiality, integrity and availability. It involves various types or categories of controls, such as technical, procedural/administrative and physical.

Information assurance (IA) is the practice of assuring information and managing risks related to the use, processing, storage, and transmission of information. Information assurance includes protection of the integrity, availability, authenticity, non-repudiation and confidentiality of user data. IA encompasses both digital protections and physical techniques. These methods apply to data in transit, both physical and electronic forms, as well as data at rest. IA is best thought of as a superset of information security, and as the business outcome of information risk management.

Disk encryption is a technology which protects information by converting it into code that cannot be deciphered easily by unauthorized people or processes. Disk encryption uses disk encryption software or hardware to encrypt every bit of data that goes on a disk or disk volume. It is used to prevent unauthorized access to data storage.

Cloud computing security or, more simply, cloud security, refers to a broad set of policies, technologies, applications, and controls utilized to protect virtualized IP, data, applications, services, and the associated infrastructure of cloud computing. It is a sub-domain of computer security, network security, and, more broadly, information security.

Mobile security, or mobile device security, is the protection of smartphones, tablets, and laptops from threats associated with wireless computing. It has become increasingly important in mobile computing. The security of personal and business information now stored on smartphones is of particular concern.

The following outline is provided as an overview of and topical guide to computer security:

<span class="mw-page-title-main">VeraCrypt</span> Free and open-source disk encryption utility

VeraCrypt is a free and open-source utility for on-the-fly encryption (OTFE). The software can create a virtual encrypted disk that works just like a regular disk but within a file. It can also encrypt a partition or the entire storage device with pre-boot authentication.

ERP Security is a wide range of measures aimed at protecting Enterprise resource planning (ERP) systems from illicit access ensuring accessibility and integrity of system data. ERP system is a computer software that serves to unify the information intended to manage the organization including Production, Supply Chain Management, Financial Management, Human Resource Management, Customer Relationship Management, Enterprise Performance Management.

In cybersecurity, cyber self-defense refers to self-defense against cyberattack. While it generally emphasizes active cybersecurity measures by computer users themselves, cyber self-defense is sometimes used to refer to the self-defense of organizations as a whole, such as corporate entities or entire nations. Surveillance self-defense is a variant of cyber self-defense and largely overlaps with it. Active and passive cybersecurity measures provide defenders with higher levels of cybersecurity, intrusion detection, incident handling and remediation capabilities. Various sectors and organizations are legally obligated to adhere to cyber security standards.

Data center security is the set of policies, precautions and practices adopted at a data center to avoid unauthorized access and manipulation of its resources. The data center houses the enterprise applications and data, hence why providing a proper security system is critical. Denial of service (DoS), theft of confidential information, data alteration, and data loss are some of the common security problems afflicting data center environments.

This is a list of cybersecurity information technology. Cybersecurity is security as it is applied to information technology. This includes all technology that stores, manipulates, or moves data, such as computers, data networks, and all devices connected to or included in networks, such as routers and switches. All information technology devices and facilities need to be secured against intrusion, unauthorized use, and vandalism. Additionally, the users of information technology should be protected from theft of assets, extortion, identity theft, loss of privacy and confidentiality of personal information, malicious mischief, damage to equipment, business process compromise, and the general activity of cybercriminals. The public should be protected against acts of cyberterrorism, such as the compromise or loss of the electric power grid.

In computing, defense strategy is a concept and practice used by computer designers, users, and IT personnel to reduce computer security risks.

References

  1. Schneier on Security: Security in the Cloud
  2. "Some principles of secure design. Designing Secure Systems module Autumn PDF Free Download". docplayer.net. Retrieved 2020-12-12.
  3. 1 2 Defense in Depth: A practical strategy for achieving Information Assurance in today’s highly networked environments.
  4. OWASP CheatSheet: Defense in depth
  5. Stewart, James Michael; Chapple, Mike; Gibson, Darril (2015). CISSP (ISC)2 Certified Information Systems Security Professional Official Study Guide.