This article has multiple issues. Please help improve it or discuss these issues on the talk page . (Learn how and when to remove these template messages)
|
Partial-order planning is an approach to automated planning that maintains a partial ordering between actions and only commits ordering between actions when forced to, that is, ordering of actions is partial. Also this planning doesn't specify which action will come out first when two actions are processed. By contrast, total-order planning maintains a total ordering between all actions at every stage of planning. Given a problem in which some sequence of actions is needed to achieve a goal, a partial-order plan specifies all actions that must be taken, but specifies an ordering between actions only where needed.
Consider the following situation: a person must travel from the start to the end of an obstacle course. The course is composed of a bridge, a see-saw, and a swing-set. The bridge must be traversed before the see-saw and swing-set are reachable. Once reachable, the see-saw and swing-set can be traversed in any order, after which the end is reachable. In a partial-order plan, ordering between these obstacles is specified only when needed. The bridge must be traversed first. Second, either the see-saw or swing-set can be traversed. Third, the remaining obstacle can be traversed. Then the end can be traversed. Partial-order planning relies upon the principle of least commitment for its efficiency.
A partial-order plan or partial plan is a plan which specifies all actions that must be taken, but only specifies the order between actions when needed. It is the result of a partial-order planner. A partial-order plan consists of four components:
To keep the possible orders of the actions as open as possible, the set of order conditions and causal links must be as small as possible.
A plan is a solution if the set of open preconditions is empty.
A linearization of a partial order plan is a total order plan derived from the particular partial order plan; in other words, both order plans consist of the same actions, with the order in the linearization being a linear extension of the partial order in the original partial order plan.
For example, a plan for baking a cake might start:
This is a partial plan because the order for finding eggs, flour and milk is not specified, the agent can wander around the store reactively accumulating all the items on its shopping list until the list is complete.
A partial-order planner is an algorithm or program which will construct a partial-order plan and search for a solution. The input is the problem description, consisting of descriptions of the initial state, the goal and possible actions.
The problem can be interpreted as a search problem where the set of possible partial-order plans is the search space. The initial state would be the plan with the open preconditions equal to the goal conditions. The final state would be any plan with no open preconditions, i.e. a solution.
The initial state is the starting conditions, and can be thought of as the preconditions to the task at hand. For a task of setting the table, the initial state could be a clear table. The goal is simply the final action that needs to be accomplished, for example setting the table. The operators of the algorithm are the actions by which the task is accomplished. For this example there may be two operators: lay (tablecloth), and place (glasses, plates, and silverware).
The plan space of the algorithm is constrained between its start and finish. The algorithm starts, producing the initial state and finishes when all parts of the goal have been achieved. In the setting a table example, two types of actions exist that must be addressed: the put-out and lay operators. Four unsolved operators also exist: Action 1, lay-tablecloth, Action 2, Put-out (plates), Action 3, Put-out (silverware), and Action 4, Put-out (glasses). However, a threat arises if Action 2, 3, or 4 comes before Action 1. This threat is that the precondition to the start of the algorithm will be unsatisfied as the table will no longer be clear. Thus, constraints exist that must be added to the algorithm that force Actions 2, 3, and 4 to come after Action 1. Once these steps are completed, the algorithm will finish and the goal will have been completed.
As seen in the algorithm presented above, partial-order planning can encounter certain threats, meaning orderings that threaten to break connected actions, thus potentially destroying the entire plan. There are two ways to resolve threats:
Promotion orders the possible threat after the connection it threatens. Demotion orders the possible threat before the connection it threatens.
Partial-order planning algorithms are known for being both sound and complete, with sound being defined as the total ordering of the algorithm, and complete being defined as the capability to find a solution, given that a solution does in fact exist.
Partial-order planning is the opposite of total-order planning, in which actions are sequenced all at once and for the entirety of the task at hand. The question arises when one has two competing processes, which one is better? Anthony Barret and Daniel Weld have argued in their 1993 book, that partial-order planning is superior to total-order planning, as it is faster and thus more efficient. They tested this theory using Korf’s taxonomy of subgoal collections, in which they found that partial-order planning performs better because it produces more trivial serializability than total-order planning. Trivial serializability facilitates a planner’s ability to perform quickly when dealing with goals that contain subgoals. Planners perform more slowly when dealing with laboriously serializable or nonserializable subgoals. The determining factor that makes a subgoal trivially or laboriously serializable is the search space of different plans. They found that partial-order planning is more adept at finding the quickest path, and is therefore the more efficient of these two main types of planning.
Partial-order plans are known to easily and optimally solve the Sussman anomaly. Using this type of incremental planning system solves this problem quickly and efficiently. This was a result of partial-order planning that solidified its place as an efficient planning system.
One drawback of this type of planning system is that it requires a lot more computational power for each node. This higher per-node cost occurs because the algorithm for partial-order planning is more complex than others. This has important artificial intelligence implications. When coding a robot to do a certain task, the creator needs to take into account how much energy is needed. Though a partial-order plan may be quicker it may not be worth the energy cost for the robot. The creator must be aware of and weigh these two options to build an efficient robot.
Logic programming is a programming, database and knowledge representation paradigm based on formal logic. A logic program is a set of sentences in logical form, representing knowledge about some problem domain. Computation is performed by applying logical reasoning to that knowledge, to solve problems in the domain. Major logic programming language families include Prolog, Answer Set Programming (ASP) and Datalog. In all of these languages, rules are written in the form of clauses:
In computer science and operations research, a genetic algorithm (GA) is a metaheuristic inspired by the process of natural selection that belongs to the larger class of evolutionary algorithms (EA). Genetic algorithms are commonly used to generate high-quality solutions to optimization and search problems by relying on biologically inspired operators such as mutation, crossover and selection. Some examples of GA applications include optimizing decision trees for better performance, solving sudoku puzzles, hyperparameter optimization, causal inference, etc.
Breadth-first search (BFS) is an algorithm for searching a tree data structure for a node that satisfies a given property. It starts at the tree root and explores all nodes at the present depth prior to moving on to the nodes at the next depth level. Extra memory, usually a queue, is needed to keep track of the child nodes that were encountered but not yet explored.
A* is a graph traversal and pathfinding algorithm, which is used in many fields of computer science due to its completeness, optimality, and optimal efficiency. Given a weighted graph, a source node and a goal node, the algorithm finds the shortest path from source to goal.
In computer science, declarative programming is a programming paradigm—a style of building the structure and elements of computer programs—that expresses the logic of a computation without describing its control flow.
Backtracking is a class of algorithms for finding solutions to some computational problems, notably constraint satisfaction problems, that incrementally builds candidates to the solutions, and abandons a candidate ("backtracks") as soon as it determines that the candidate cannot possibly be completed to a valid solution.
In computer science, a topological sort or topological ordering of a directed graph is a linear ordering of its vertices such that for every directed edge (u,v) from vertex u to vertex v, u comes before v in the ordering. For instance, the vertices of the graph may represent tasks to be performed, and the edges may represent constraints that one task must be performed before another; in this application, a topological ordering is just a valid sequence for the tasks. Precisely, a topological sort is a graph traversal in which each node v is visited only after all its dependencies are visited. A topological ordering is possible if and only if the graph has no directed cycles, that is, if it is a directed acyclic graph (DAG). Any DAG has at least one topological ordering, and algorithms are known for constructing a topological ordering of any DAG in linear time. Topological sorting has many applications, especially in ranking problems such as feedback arc set. Topological sorting is possible even when the DAG has disconnected components.
GOMS is a specialized human information processor model for human-computer interaction observation that describes a user's cognitive structure on four components. In the book The Psychology of Human Computer Interaction. written in 1983 by Stuart K. Card, Thomas P. Moran and Allen Newell, the authors introduce: "a set of Goals, a set of Operators, a set of Methods for achieving the goals, and a set of Selections rules for choosing among competing methods for goals." GOMS is a widely used method by usability specialists for computer system designers because it produces quantitative and qualitative predictions of how people will use a proposed system.
Automated planning and scheduling, sometimes denoted as simply AI planning, is a branch of artificial intelligence that concerns the realization of strategies or action sequences, typically for execution by intelligent agents, autonomous robots and unmanned vehicles. Unlike classical control and classification problems, the solutions are complex and must be discovered and optimized in multidimensional space. Planning is also related to decision theory.
The Planning Domain Definition Language (PDDL) is an attempt to standardize Artificial Intelligence (AI) planning languages. It was first developed by Drew McDermott and his colleagues in 1998 mainly to make the 1998/2000 International Planning Competition (IPC) possible, and then evolved with each competition. The standardization provided by PDDL has the benefit of making research more reusable and easily comparable, though at the cost of some expressive power, compared to domain-specific systems.
The Stanford Research Institute Problem Solver, known by its acronym STRIPS, is an automated planner developed by Richard Fikes and Nils Nilsson in 1971 at SRI International. The same name was later used to refer to the formal language of the inputs to this planner. This language is the base for most of the languages for expressing automated planning problem instances in use today; such languages are commonly known as action languages. This article only describes the language, not the planner.
In artificial intelligence, hierarchical task network (HTN) planning is an approach to automated planning in which the dependency among actions can be given in the form of hierarchically structured networks.
In computer science, recursion is a method of solving a computational problem where the solution depends on solutions to smaller instances of the same problem. Recursion solves such recursive problems by using functions that call themselves from within their own code. The approach can be applied to many types of problems, and recursion is one of the central ideas of computer science.
The power of recursion evidently lies in the possibility of defining an infinite set of objects by a finite statement. In the same manner, an infinite number of computations can be described by a finite recursive program, even if this program contains no explicit repetitions.
Motion planning, also path planning is a computational problem to find a sequence of valid configurations that moves the object from the source to destination. The term is used in computational geometry, computer animation, robotics and computer games.
A schedule or a timetable, as a basic time-management tool, consists of a list of times at which possible tasks, events, or actions are intended to take place, or of a sequence of events in the chronological order in which such things are intended to take place. The process of creating a schedule — deciding how to order these tasks and how to commit resources between the variety of possible tasks — is called scheduling, and a person responsible for making a particular schedule may be called a scheduler. Making and following schedules is an ancient human activity.
In computer science, graph traversal refers to the process of visiting each vertex in a graph. Such traversals are classified by the order in which the vertices are visited. Tree traversal is a special case of graph traversal.
In software engineering, graphical user interface testing is the process of testing a product's graphical user interface (GUI) to ensure it meets its specifications. This is normally done through the use of a variety of test cases.
The Sussman anomaly is a problem in artificial intelligence, first described by Gerald Sussman, that illustrates a weakness of noninterleaved planning algorithms, which were prominent in the early 1970s. Most modern planning systems are not restricted to noninterleaved planning and thus can handle this anomaly. While the significance/value of the problem is now a historical one, it is still useful for explaining why planning is non-trivial. In the problem, three blocks rest on a table. The agent must stack the blocks such that A is atop B, which in turn is atop C. However, it may only move one block at a time. The problem starts with B on the table, C atop A, and A on the table:
In artificial intelligence, action description language (ADL) is an automated planning and scheduling system in particular for robots. It is considered an advancement of STRIPS. Edwin Pednault proposed this language in 1987. It is an example of an action language.
Action model learning is an area of machine learning concerned with creation and modification of software agent's knowledge about effects and preconditions of the actions that can be executed within its environment. This knowledge is usually represented in logic-based action description language and used as the input for automated planners.