CARINE

Last updated

CARINE (Computer Aided Reasoning Engine) is a first-order classical logic automated theorem prover. It was initially built for the study of the enhancement effects of the strategies delayed clause-construction (DCC) and attribute sequences (ATS) in a depth-first search based algorithm. [1] CARINE's main search algorithm is semi-linear resolution (SLR) which is based on an iteratively-deepening depth-first search (also known as depth-first iterative-deepening (DFID)) [2] and used in theorem provers like THEO. [3] SLR employs DCC to achieve a high inference rate, and ATS to reduce the search space.

Contents

Delayed Clause Construction (DCC)

Delayed Clause Construction is a stalling strategy that enhances a theorem prover's performance by reducing the work to construct clauses to a minimum. Instead of constructing every conclusion (clause) of an applied inference rule, the information to construct such clause is temporarily stored until the theorem prover decides to either discard the clause or construct it. If the theorem prover decides to keep the clause, it will be constructed and stored in memory, otherwise the information to construct the clause is erased. Storing the information from which an inferred clause can be constructed require almost no additional CPU operations. However, constructing a clause may consume a lot of time. Some theorem provers spend 30%–40% of their total execution time constructing and deleting clauses. With DCC this wasted time can be salvaged.

DCC is useful when too many intermediate clauses (especially first-order clauses) are being constructed and discarded in a short period of time because the operations performed to construct such short lived clauses are avoided. DCC may not be very effective on theorems with only propositional clauses.

How does DCC work?

After every application of an inference rule, certain variables may have to be substituted by terms (e.g. xf(a)) and thus a substitution set is formed. Instead of constructing the resulting clause and discarding the substitution set, the theorem prover simply maintains the substitution set along with some other information, like what clauses where involved in the inference rule and what inference rule was applied, and continues the derivation without constructing the resulting clause of the inference rule. This procedure keeps going along a derivation until the theorem provers reaches a point where it decides, based on certain criteria and heuristics, whether to construct the final clause in the derivation (and probably some other clause(s) along the path) or discard the whole derivation i.e., deletes from memory the maintained substitution sets and whatever information stored with them.

Attribute sequences (ATS)

(An informal definition of) a clause in theorem proving is a statement that can result in a true or false answer depending on the evaluation of its literals. A clause is represented as a disjunction (i.e., OR), conjunction (i.e., AND), set, or multi-set (similar to a set but can contain identical elements) of literals.

An example of a clause as a disjunction of literals is:

where the symbols and are, respectively, logical or and logical not.

The above example states that if Y is wealthy AND smart AND beautiful then X loves Y. It does not say who X and Y are though. Note that the above representation comes from the logical statement:

For all Y, X belonging to the domain of human beings:

By using some transformation rules of formal logic we produce the disjunction of literals of the example given above.

X and Y are variables. wealthy, smart, beautiful, loves are literals. Suppose we substitute the variable X for the constant John and the variable Y for the constant Jane then the above clause will become:

A clause attribute is a characteristic of a clause. Some examples of clause attributes are:

Example

the clause

has:

An attribute sequence is a sequence of k n-tuples of clause attributes that represent a projection of a set of derivations of length k. k and n are strictly positive integers. The set of derivations form the domain and the attribute sequences form the codomain of the mapping between derivations and attribute sequences.

Example

<(2,2),(2,1),(1,1)> is an attribute sequence where k = 3 and n = 2.

It corresponds to some derivation, say, <(B1,B2),(R1,B3),(R2,B4)> where B1, B2, R1, B3, R2, and B4 are clauses. The attribute here is assumed to be the length of a clause.

The first pair (2,2) corresponds to the pair (B1,B2) from the derivation. It indicates that the length of B1 is 2 and the length of B2 is also 2.

The second pair (2,1) corresponds to the pair (R1,B3) and it indicates that the length of R1 is 2 and the length of B3 is 1.

The last pair (1,1) corresponds to the pair (R2,B4) and it indicates that the length of R2 is 1 and the length of B4 is 1.

Note: An n-tuple of clause attributes is similar (but not the same) to the feature vector named by Stephan Schulz, PhD (see E equational theorem prover).

Related Research Articles

First-order logic—also known as predicate logic, quantificational logic, and first-order predicate calculus—is a collection of formal systems used in mathematics, philosophy, linguistics, and computer science. First-order logic uses quantified variables over non-logical objects, and allows the use of sentences that contain variables, so that rather than propositions such as "Socrates is a man", one can have expressions in the form "there exists x such that x is Socrates and x is a man", where "there exists" is a quantifier, while x is a variable. This distinguishes it from propositional logic, which does not use quantifiers or relations; in this sense, propositional logic is the foundation of first-order logic.

Propositional calculus is a branch of logic. It is also called propositional logic, statement logic, sentential calculus, sentential logic, or sometimes zeroth-order logic. It deals with propositions and relations between propositions, including the construction of arguments based on them. Compound propositions are formed by connecting propositions by logical connectives. Propositions that contain no logical connectives are called atomic propositions.

Inductive logic programming (ILP) is a subfield of symbolic artificial intelligence which uses logic programming as a uniform representation for examples, background knowledge and hypotheses. Given an encoding of the known background knowledge and a set of examples represented as a logical database of facts, an ILP system will derive a hypothesised logic program which entails all the positive and none of the negative examples.

In boolean logic, a disjunctive normal form (DNF) is a canonical normal form of a logical formula consisting of a disjunction of conjunctions; it can also be described as an OR of ANDs, a sum of products, or a cluster concept. As a normal form, it is useful in automated theorem proving.

In Boolean logic, a formula is in conjunctive normal form (CNF) or clausal normal form if it is a conjunction of one or more clauses, where a clause is a disjunction of literals; otherwise put, it is a product of sums or an AND of ORs. As a canonical normal form, it is useful in automated theorem proving and circuit theory.

In predicate logic, an existential quantification is a type of quantifier, a logical constant which is interpreted as "there exists", "there is at least one", or "for some". It is usually denoted by the logical operator symbol ∃, which, when used together with a predicate variable, is called an existential quantifier. Existential quantification is distinct from universal quantification, which asserts that the property or relation holds for all members of the domain. Some sources use the term existentialization to refer to existential quantification.

Intuitionistic logic, sometimes more generally called constructive logic, refers to systems of symbolic logic that differ from the systems used for classical logic by more closely mirroring the notion of constructive proof. In particular, systems of intuitionistic logic do not include the law of the excluded middle and double negation elimination, which are fundamental inference rules in classical logic.

In mathematical logic, sequent calculus is a style of formal logical argumentation in which every line of a proof is a conditional tautology instead of an unconditional tautology. Each conditional tautology is inferred from other conditional tautologies on earlier lines in a formal argument according to rules and procedures of inference, giving a better approximation to the natural style of deduction used by mathematicians than to David Hilbert's earlier style of formal logic, in which every line was an unconditional tautology. More subtle distinctions may exist; for example, propositions may implicitly depend upon non-logical axioms. In that case, sequents signify conditional theorems in a first-order language rather than conditional tautologies.

In mathematics, a Heyting algebra is a bounded lattice equipped with a binary operation ab of implication such that ≤ b is equivalent to c ≤. From a logical standpoint, AB is by this definition the weakest proposition for which modus ponens, the inference rule AB, AB, is sound. Like Boolean algebras, Heyting algebras form a variety axiomatizable with finitely many equations. Heyting algebras were introduced by Arend Heyting (1930) to formalize intuitionistic logic.

A formula of the predicate calculus is in prenex normal form (PNF) if it is rewritten as a string of quantifiers and bound variables, called the prefix, followed by a quantifier-free part, called the matrix. Together with the normal forms in propositional logic, it provides a canonical normal form useful in automated theorem proving.

A paraconsistent logic is an attempt at a logical system to deal with contradictions in a discriminating way. Alternatively, paraconsistent logic is the subfield of logic that is concerned with studying and developing "inconsistency-tolerant" systems of logic which reject the principle of explosion.

In computer science, 2-satisfiability, 2-SAT or just 2SAT is a computational problem of assigning values to variables, each of which has two possible values, in order to satisfy a system of constraints on pairs of variables. It is a special case of the general Boolean satisfiability problem, which can involve constraints on more than two variables, and of constraint satisfaction problems, which can allow more than two choices for the value of each variable. But in contrast to those more general problems, which are NP-complete, 2-satisfiability can be solved in polynomial time.

Independence-friendly logic is an extension of classical first-order logic (FOL) by means of slashed quantifiers of the form and , where is a finite set of variables. The intended reading of is "there is a which is functionally independent from the variables in ". IF logic allows one to express more general patterns of dependence between variables than those which are implicit in first-order logic. This greater level of generality leads to an actual increase in expressive power; the set of IF sentences can characterize the same classes of structures as existential second-order logic. For example, it can express branching quantifier sentences, such as the formula which expresses infinity in the empty signature; this cannot be done in FOL. Therefore, first-order logic cannot, in general, express this pattern of dependency, in which depends only on and , and depends only on and . IF logic is more general than branching quantifiers, for example in that it can express dependencies that are not transitive, such as in the quantifier prefix , which expresses that depends on , and depends on , but does not depend on .

In mathematical logic and automated theorem proving, resolution is a rule of inference leading to a refutation complete theorem-proving technique for sentences in propositional logic and first-order logic. For propositional logic, systematically applying the resolution rule acts as a decision procedure for formula unsatisfiability, solving the Boolean satisfiability problem. For first-order logic, resolution can be used as the basis for a semi-algorithm for the unsatisfiability problem of first-order logic, providing a more practical method than one following from Gödel's completeness theorem.

In computational complexity theory, the maximum satisfiability problem (MAX-SAT) is the problem of determining the maximum number of clauses, of a given Boolean formula in conjunctive normal form, that can be made true by an assignment of truth values to the variables of the formula. It is a generalization of the Boolean satisfiability problem, which asks whether there exists a truth assignment that makes all clauses true.

Constraint logic programming is a form of constraint programming, in which logic programming is extended to include concepts from constraint satisfaction. A constraint logic program is a logic program that contains constraints in the body of clauses. An example of a clause including a constraint is A(X,Y):-X+Y>0,B(X),C(Y). In this clause, X+Y>0 is a constraint; A(X,Y), B(X), and C(Y) are literals as in regular logic programming. This clause states one condition under which the statement A(X,Y) holds: X+Y is greater than zero and both B(X) and C(Y) are true.

In mathematical logic, a tautology is a formula or assertion that is true in every possible interpretation. An example is "x=y or x≠y". Similarly, "either the ball is green, or the ball is not green" is always true, regardless of the colour of the ball.

In logic, especially mathematical logic, a Hilbert system, sometimes called Hilbert calculus, Hilbert-style deductive system or Hilbert–Ackermann system, is a type of system of formal deduction attributed to Gottlob Frege and David Hilbert. These deductive systems are most often studied for first-order logic, but are of interest for other logics as well.

SLD resolution is the basic inference rule used in logic programming. It is a refinement of resolution, which is both sound and refutation complete for Horn clauses.

References

  1. Haroun, Paul (2005). Enhancing a Theorem Prover by Delayed Clause Construction and Attribute Sequences (PhD thesis). McGill University.
  2. Korf, Richard E (1985). "Depth-First Iterative -Deepening: An Optimal Admissible Tree Search". Artificial Intelligence . 27: 97–109. doi:10.1016/0004-3702(85)90084-0.
  3. Newborn, Monty (2001). Automated Theorem Proving: Theory and Practice. New York: Springer-Verlag. ISBN   978-0-387-95075-4.