Active Brownian particle

Last updated

An active Brownian particle (ABP) is a model of self-propelled motion in a dissipative environment. [1] [2] [3] It is a nonequilibrium generalization of a Brownian particle.

Contents

The self-propulsion results from a force that acts on the particle's center of mass and points in the direction of an intrinsic body axis (the particle orientation). [3] It is common to treat particles as spheres, though other shapes (such as rods) have also been studied. [4] [5] Both the center of mass and the direction of the propulsive force are subjected to white noise, which contributes a diffusive component to the overall dynamics. In its simplest version, the dynamics is overdamped and the propulsive force has constant magnitude, so that the magnitude of the velocity is likewise constant (speed-up to terminal velocity is instantaneous).

The term active Brownian particle usually refers to this simple model [1] and its straightforward extensions, though some authors have used it for more general self-propelled particle models. [5] [6]

Equations of motion

Mathematically, an active Brownian particle is described by its center of mass coordinates and a unit vector giving the orientation. In two dimensions, the orientation vector can be parameterized by the 2D polar angle , so that . The equations of motion in this case are the following stochastic differential equations:

where

with the 2×2 identity matrix. The terms and are translational and rotational white noise, which is understood as a heuristic representation of the Wiener process. Finally, is an external potential, is the mass, is the friction, is the magnitude of the self-propulsion velocity, and and are the translational and rotational diffusion coefficients. [7]

The dynamics can also be described in terms of a probability density function , which gives the probability, at time , of finding a particle at position and with orientation . By averaging over the stochastic trajectories from the equations of motion, can be shown to obey the following partial differential equation:

Behavior

For an isolated particle far from boundaries, the combination of diffusion and self-propulsion produces a stochastic (fluctuating) trajectory that appears ballistic over short length scales and diffusive over large length scales. The transition from ballistic to diffusive motion is defined by a characteristic length , called the persistence length. [2]

In the presence of boundaries or other particles, more complex behavior is possible. Even in the absence of attractive forces, particles tend to accumulate at boundaries. Obstacles placed within a bath of active Brownian particles can induce long-range density variations and nonzero currents in steady state. [8] [9]

Sufficiently concentrated suspensions of active Brownian particles phase separate into a dense and dilute regions. [10] [11] The particles' motility drives a positive feedback loop, in which particles collide and hinder each other's motion, leading to further collisions and particle accumulation. [2] At a coarse-grained level, a particle's effective self-propulsion velocity decreases with increased density, which promotes clustering. In the more general context of self-propelled particle models, this behavior is known as motility-induced phase separation. [10] It is a type of athermal phase separation because it occurs even if the particles are spheres with hard-core (purely repulsive) interactions.

Variations

A variant of active Brownian motion involves complete directional reversals in addition to rotational diffusion. This movement pattern is seen in bacteria like Myxococcus xanthus , Pseudomonas putida, Pseudoalteromonas haloplanktis , Shewanella putrefaciens , and Pseudomonas citronellolis. [12]

See also

Notes

  1. 1 2 Howse, Jonathan R.; Jones, Richard A. L.; Ryan, Anthony J.; Gough, Tim; Vafabakhsh, Reza; Golestanian, Ramin (2007-07-27). "Self-Motile Colloidal Particles: From Directed Propulsion to Random Walk". Physical Review Letters. 99 (4): 048102. doi:10.1103/PhysRevLett.99.048102.
  2. 1 2 3 Marchetti et al. 2016.
  3. 1 2 Zöttl & Stark 2016.
  4. Peruani 2016.
  5. 1 2 Bechinger et al. 2016.
  6. Romanczuk et al. 2012.
  7. Shaebani et al. 2020.
  8. Ni, Cohen Stuart & Bolhuis 2015.
  9. Baek et al. 2018.
  10. 1 2 Cates & Tailleur 2015.
  11. Fodor & Cristina Marchetti 2018.
  12. Santra, Basu & Sabhapandit 2021.

Sources

Related Research Articles

<span class="mw-page-title-main">Bremsstrahlung</span> Electromagnetic radiation due to deceleration of charged particles

In particle physics, bremsstrahlung is electromagnetic radiation produced by the deceleration of a charged particle when deflected by another charged particle, typically an electron by an atomic nucleus. The moving particle loses kinetic energy, which is converted into radiation, thus satisfying the law of conservation of energy. The term is also used to refer to the process of producing the radiation. Bremsstrahlung has a continuous spectrum, which becomes more intense and whose peak intensity shifts toward higher frequencies as the change of the energy of the decelerated particles increases.

In physics, a Langevin equation is a stochastic differential equation describing how a system evolves when subjected to a combination of deterministic and fluctuating ("random") forces. The dependent variables in a Langevin equation typically are collective (macroscopic) variables changing only slowly in comparison to the other (microscopic) variables of the system. The fast (microscopic) variables are responsible for the stochastic nature of the Langevin equation. One application is to Brownian motion, which models the fluctuating motion of a small particle in a fluid.

In probability and statistics, an exponential family is a parametric set of probability distributions of a certain form, specified below. This special form is chosen for mathematical convenience, including the enabling of the user to calculate expectations, covariances using differentiation based on some useful algebraic properties, as well as for generality, as exponential families are in a sense very natural sets of distributions to consider. The term exponential class is sometimes used in place of "exponential family", or the older term Koopman–Darmois family. Sometimes loosely referred to as "the" exponential family, this class of distributions is distinct because they all possess a variety of desirable properties, most importantly the existence of a sufficient statistic.

In physics, mathematics and statistics, scale invariance is a feature of objects or laws that do not change if scales of length, energy, or other variables, are multiplied by a common factor, and thus represent a universality.

In classical mechanics, the Laplace–Runge–Lenz (LRL) vector is a vector used chiefly to describe the shape and orientation of the orbit of one astronomical body around another, such as a binary star or a planet revolving around a star. For two bodies interacting by Newtonian gravity, the LRL vector is a constant of motion, meaning that it is the same no matter where it is calculated on the orbit; equivalently, the LRL vector is said to be conserved. More generally, the LRL vector is conserved in all problems in which two bodies interact by a central force that varies as the inverse square of the distance between them; such problems are called Kepler problems.

<span class="mw-page-title-main">Chiral model</span> Model of mesons in the massless quark limit

In nuclear physics, the chiral model, introduced by Feza Gürsey in 1960, is a phenomenological model describing effective interactions of mesons in the chiral limit (where the masses of the quarks go to zero), but without necessarily mentioning quarks at all. It is a nonlinear sigma model with the principal homogeneous space of a Lie group as its target manifold. When the model was originally introduced, this Lie group was the SU(N), where N is the number of quark flavors. The Riemannian metric of the target manifold is given by a positive constant multiplied by the Killing form acting upon the Maurer–Cartan form of SU(N).

<span class="mw-page-title-main">Electromagnetic shielding</span> Using conductive or magnetic materials to reduce electromagnetic field intensity

In electrical engineering, electromagnetic shielding is the practice of reducing or redirecting the electromagnetic field (EMF) in a space with barriers made of conductive or magnetic materials. It is typically applied to enclosures, for isolating electrical devices from their surroundings, and to cables to isolate wires from the environment through which the cable runs. Electromagnetic shielding that blocks radio frequency (RF) electromagnetic radiation is also known as RF shielding.

<span class="mw-page-title-main">Stokes flow</span> Type of fluid flow

Stokes flow, also named creeping flow or creeping motion, is a type of fluid flow where advective inertial forces are small compared with viscous forces. The Reynolds number is low, i.e. . This is a typical situation in flows where the fluid velocities are very slow, the viscosities are very large, or the length-scales of the flow are very small. Creeping flow was first studied to understand lubrication. In nature, this type of flow occurs in the swimming of microorganisms and sperm. In technology, it occurs in paint, MEMS devices, and in the flow of viscous polymers generally.

<span class="mw-page-title-main">Ornstein–Uhlenbeck process</span> Stochastic process modeling random walk with friction

In mathematics, the Ornstein–Uhlenbeck process is a stochastic process with applications in financial mathematics and the physical sciences. Its original application in physics was as a model for the velocity of a massive Brownian particle under the influence of friction. It is named after Leonard Ornstein and George Eugene Uhlenbeck.

In magnetohydrodynamics, the magnetic Reynolds number (Rm) is a dimensionless quantity that estimates the relative effects of advection or induction of a magnetic field by the motion of a conducting medium to the magnetic diffusion. It is the magnetic analogue of the Reynolds number in fluid mechanics and is typically defined by:

The Gross–Pitaevskii equation describes the ground state of a quantum system of identical bosons using the Hartree–Fock approximation and the pseudopotential interaction model.

The eta and eta prime meson are isosinglet mesons made of a mixture of up, down and strange quarks and their antiquarks. The charmed eta meson and bottom eta meson are similar forms of quarkonium; they have the same spin and parity as the (light)
η
defined, but are made of charm quarks and bottom quarks respectively. The top quark is too heavy to form a similar meson, due to its very fast decay.

The Vicsek model is a mathematical model used to describe active matter. One motivation of the study of active matter by physicists is the rich phenomenology associated to this field. Collective motion and swarming are among the most studied phenomena. Within the huge number of models that have been developed to catch such behavior from a microscopic description, the most famous is the model introduced by Tamás Vicsek et al. in 1995.

A proper reference frame in the theory of relativity is a particular form of accelerated reference frame, that is, a reference frame in which an accelerated observer can be considered as being at rest. It can describe phenomena in curved spacetime, as well as in "flat" Minkowski spacetime in which the spacetime curvature caused by the energy–momentum tensor can be disregarded. Since this article considers only flat spacetime—and uses the definition that special relativity is the theory of flat spacetime while general relativity is a theory of gravitation in terms of curved spacetime—it is consequently concerned with accelerated frames in special relativity.

The quantum Fisher information is a central quantity in quantum metrology and is the quantum analogue of the classical Fisher information. It is one of the central quantities used to qualify the utility of an input state, especially in Mach–Zehnder interferometer-based phase or parameter estimation. It is shown that the quantum Fisher information can also be a sensitive probe of a quantum phase transition. The quantum Fisher information of a state with respect to the observable is defined as

The Diósi–Penrose model was introduced as a possible solution to the measurement problem, where the wave function collapse is related to gravity. The model was first suggested by Lajos Diósi when studying how possible gravitational fluctuations may affect the dynamics of quantum systems. Later, following a different line of reasoning, Roger Penrose arrived at an estimation for the collapse time of a superposition due to gravitational effects, which is the same as that found by Diósi, hence the name Diósi–Penrose model. However, it should be pointed out that while Diósi gave a precise dynamical equation for the collapse, Penrose took a more conservative approach, estimating only the collapse time of a superposition.

<span class="mw-page-title-main">Run-and-tumble motion</span> Type of bacterial motion

Run-and-tumble motion is a movement pattern exhibited by certain bacteria and other microscopic agents. It consists of an alternating sequence of "runs" and "tumbles": during a run, the agent propels itself in a fixed direction, and during a tumble, it remains stationary while it reorients itself in preparation for the next run.

In physics and mathematics, the Klein–Kramers equation or sometimes referred as Kramers–Chandrasekhar equation is a partial differential equation that describes the probability density function f of a Brownian particle in phase space (r, p). It is a special case of the Fokker–Planck equation.

In mathematics, mirror descent is an iterative optimization algorithm for finding a local minimum of a differentiable function.

In machine learning, diffusion models, also known as diffusion probabilistic models or score-based generative models, are a class of latent variable generative models. A diffusion model consists of three major components: the forward process, the reverse process, and the sampling procedure. The goal of diffusion models is to learn a diffusion process that generates a probability distribution for a given dataset from which we can then sample new images. They learn the latent structure of a dataset by modeling the way in which data points diffuse through their latent space.