This article needs additional citations for verification .(October 2021) |
In physics, symmetry breaking is a phenomenon where a disordered but symmetric state collapses into an ordered, but less symmetric state. [1] This collapse is often one of many possible bifurcations that a particle can take as it approaches a lower energy state. Due to the many possibilities, an observer may assume the result of the collapse to be arbitrary. This phenomenon is fundamental to quantum field theory (QFT), and further, contemporary understandings of physics. [2] Specifically, it plays a central role in the Glashow–Weinberg–Salam model which forms part of the Standard model modelling the electroweak sector.
In an infinite system (Minkowski spacetime) symmetry breaking occurs, however in a finite system (that is, any real super-condensed system), the system is less predictable, but in many cases quantum tunneling occurs. [2] [3] Symmetry breaking and tunneling relate through the collapse of a particle into non-symmetric state as it seeks a lower energy. [4]
Symmetry breaking can be distinguished into two types, explicit and spontaneous. They are characterized by whether the equations of motion fail to be invariant, or the ground state fails to be invariant.
This section describes spontaneous symmetry breaking. This is the idea that for a physical system, the lowest energy configuration (the vacuum state) is not the most symmetric configuration of the system. Roughly speaking there are three types of symmetry that can be broken: discrete, continuous and gauge, ordered in increasing technicality.
An example of a system with discrete symmetry is given by the figure with the red graph: consider a particle moving on this graph, subject to gravity. A similar graph could be given by the function . This system is symmetric under reflection in the y-axis. There are three possible stationary states for the particle: the top of the hill at , or the bottom, at . When the particle is at the top, the configuration respects the reflection symmetry: the particle stays in the same place when reflected. However, the lowest energy configurations are those at . When the particle is in either of these configurations, it is no longer fixed under reflection in the y-axis: reflection swaps the two vacuum states.
An example with continuous symmetry is given by a 3d analogue of the previous example, from rotating the graph around an axis through the top of the hill, or equivalently given by the graph . This is essentially the graph of the Mexican hat potential. This has a continuous symmetry given by rotation about the axis through the top of the hill (as well as a discrete symmetry by reflection through any radial plane). Again, if the particle is at the top of the hill it is fixed under rotations, but it has higher gravitational energy at the top. At the bottom, it is no longer invariant under rotations but minimizes its gravitational potential energy. Furthermore rotations move the particle from one energy minimizing configuration to another. There is a novelty here not seen in the previous example: from any of the vacuum states it is possible to access any other vacuum state with only a small amount of energy, by moving around the trough at the bottom of the hill, whereas in the previous example, to access the other vacuum, the particle would have to cross the hill, requiring a large amount of energy.
Gauge symmetry breaking is the most subtle, but has important physical consequences. Roughly speaking, for the purposes of this section a gauge symmetry is an assignment of systems with continuous symmetry to every point in spacetime. Gauge symmetry forbids mass generation for gauge fields, yet massive gauge fields (W and Z bosons) have been observed. Spontaneous symmetry breaking was developed to resolve this inconsistency. The idea is that in an early stage of the universe it was in a high energy state, analogous to the particle being at the top of the hill, and so had full gauge symmetry and all the gauge fields were massless. As it cooled, it settled into a choice of vacuum, thus spontaneously breaking the symmetry, thus removing the gauge symmetry and allowing mass generation of those gauge fields. A full explanation is highly technical: see electroweak interaction.
In spontaneous symmetry breaking (SSB), the equations of motion of the system are invariant, but any vacuum state (lowest energy state) is not.
For an example with two-fold symmetry, if there is some atom which has two vacuum states, occupying either one of these states breaks the two-fold symmetry. This act of selecting one of the states as the system reaches a lower energy is SSB. When this happens, the atom is no longer symmetric (reflectively symmetric) and has collapsed into a lower energy state.
Such a symmetry breaking is parametrized by an order parameter. A special case of this type of symmetry breaking is dynamical symmetry breaking.
In the Lagrangian setting of Quantum field theory (QFT), the Lagrangian is a functional of quantum fields which is invariant under the action of a symmetry group . However, the vacuum expectation value formed when the particle collapses to a lower energy may not be invariant under . In this instance, it will partially break the symmetry of , into a subgroup . This is spontaneous symmetry breaking.
Within the context of gauge symmetry however, SSB is the phenomenon by which gauge fields 'acquire mass' despite gauge-invariance enforcing that such fields be massless. This is because the SSB of gauge symmetry breaks gauge-invariance, and such a break allows for the existence of massive gauge fields. This is an important exemption from Goldstone's theorem, where a Nambu-Goldstone boson can gain mass, becoming a Higgs boson in the process. [5]
Further, in this context the usage of 'symmetry breaking' while standard, is a misnomer, as gauge 'symmetry' is not really a symmetry but a redundancy in the description of the system. Mathematically, this redundancy is a choice of trivialization, somewhat analogous to redundancy arising from a choice of basis.
Spontaneous symmetry breaking is also associated with phase transitions. For example in the Ising model, as the temperature of the system falls below the critical temperature the symmetry of the vacuum is broken, giving a phase transition of the system.
In explicit symmetry breaking (ESB), the equations of motion describing a system are variant under the broken symmetry. In Hamiltonian mechanics or Lagrangian mechanics, this happens when there is at least one term in the Hamiltonian (or Lagrangian) that explicitly breaks the given symmetry.
In the Hamiltonian setting, this is often studied when the Hamiltonian can be written .
Here is a 'base Hamiltonian', which has some manifest symmetry. More explicitly, it is symmetric under the action of a (Lie) group . Often this is an integrable Hamiltonian.
The is a perturbation or interaction Hamiltonian. This is not invariant under the action of . It is often proportional to a small, perturbative parameter.
This is essentially the paradigm for perturbation theory in quantum mechanics. An example of its use is in finding the fine structure of atomic spectra.
Symmetry breaking can cover any of the following scenarios:
One of the first cases of broken symmetry discussed in the physics literature is related to the form taken by a uniformly rotating body of incompressible fluid in gravitational and hydrostatic equilibrium. Jacobi [6] and soon later Liouville, [7] in 1834, discussed the fact that a tri-axial ellipsoid was an equilibrium solution for this problem when the kinetic energy compared to the gravitational energy of the rotating body exceeded a certain critical value. The axial symmetry presented by the McLaurin spheroids is broken at this bifurcation point. Furthermore, above this bifurcation point, and for constant angular momentum, the solutions that minimize the kinetic energy are the non-axially symmetric Jacobi ellipsoids instead of the Maclaurin spheroids.
In theoretical physics, quantum chromodynamics (QCD) is the study of the strong interaction between quarks mediated by gluons. Quarks are fundamental particles that make up composite hadrons such as the proton, neutron and pion. QCD is a type of quantum field theory called a non-abelian gauge theory, with symmetry group SU(3). The QCD analog of electric charge is a property called color. Gluons are the force carriers of the theory, just as photons are for the electromagnetic force in quantum electrodynamics. The theory is an important part of the Standard Model of particle physics. A large body of experimental evidence for QCD has been gathered over the years.
In theoretical physics, quantum field theory (QFT) is a theoretical framework that combines classical field theory, special relativity, and quantum mechanics. QFT is used in particle physics to construct physical models of subatomic particles and in condensed matter physics to construct models of quasiparticles. The current standard model of particle physics is based on quantum field theory.
Spontaneous symmetry breaking is a spontaneous process of symmetry breaking, by which a physical system in a symmetric state spontaneously ends up in an asymmetric state. In particular, it can describe systems where the equations of motion or the Lagrangian obey symmetries, but the lowest-energy vacuum solutions do not exhibit that same symmetry. When the system goes to one of those vacuum solutions, the symmetry is broken for perturbations around that vacuum even though the entire Lagrangian retains that symmetry.
In gauge theory and mathematical physics, a topological quantum field theory is a quantum field theory which computes topological invariants.
In particle and condensed matter physics, Goldstone bosons or Nambu–Goldstone bosons (NGBs) are bosons that appear necessarily in models exhibiting spontaneous breakdown of continuous symmetries. They were discovered by Yoichiro Nambu in particle physics within the context of the BCS superconductivity mechanism, and subsequently elucidated by Jeffrey Goldstone, and systematically generalized in the context of quantum field theory. In condensed matter physics such bosons are quasiparticles and are known as Anderson–Bogoliubov modes.
In the Standard Model of particle physics, the Higgs mechanism is essential to explain the generation mechanism of the property "mass" for gauge bosons. Without the Higgs mechanism, all bosons (one of the two classes of particles, the other being fermions) would be considered massless, but measurements show that the W+, W−, and Z0 bosons actually have relatively large masses of around 80 GeV/c2. The Higgs field resolves this conundrum. The simplest description of the mechanism adds a quantum field (the Higgs field) which permeates all of space to the Standard Model. Below some extremely high temperature, the field causes spontaneous symmetry breaking during interactions. The breaking of symmetry triggers the Higgs mechanism, causing the bosons it interacts with to have mass. In the Standard Model, the phrase "Higgs mechanism" refers specifically to the generation of masses for the W±, and Z weak gauge bosons through electroweak symmetry breaking. The Large Hadron Collider at CERN announced results consistent with the Higgs particle on 14 March 2013, making it extremely likely that the field, or one like it, exists, and explaining how the Higgs mechanism takes place in nature. The view of the Higgs mechanism as involving spontaneous symmetry breaking of a gauge symmetry is technically incorrect since by Elitzur's theorem gauge symmetries can never be spontaneously broken. Rather, the Fröhlich–Morchio–Strocchi mechanism reformulates the Higgs mechanism in an entirely gauge invariant way, generally leading to the same results.
In physics, canonical quantization is a procedure for quantizing a classical theory, while attempting to preserve the formal structure, such as symmetries, of the classical theory to the greatest extent possible.
In quantum mechanics, superselection extends the concept of selection rules.
In physics, a parity transformation is the flip in the sign of one spatial coordinate. In three dimensions, it can also refer to the simultaneous flip in the sign of all three spatial coordinates :
In theoretical physics, explicit symmetry breaking is the breaking of a symmetry of a theory by terms in its defining equations of motion that do not respect the symmetry. Usually this term is used in situations where these symmetry-breaking terms are small, so that the symmetry is approximately respected by the theory. An example is the spectral line splitting in the Zeeman effect, due to a magnetic interaction perturbation in the Hamiltonian of the atoms involved.
The QCD vacuum is the quantum vacuum state of quantum chromodynamics (QCD). It is an example of a non-perturbative vacuum state, characterized by non-vanishing condensates such as the gluon condensate and the quark condensate in the complete theory which includes quarks. The presence of these condensates characterizes the confined phase of quark matter.
The symmetry of a physical system is a physical or mathematical feature of the system that is preserved or remains unchanged under some transformation.
In particle physics, chiral symmetry breaking generally refers to the dynamical spontaneous breaking of a chiral symmetry associated with massless fermions. This is usually associated with a gauge theory such as quantum chromodynamics, the quantum field theory of the strong interaction, and it also occurs through the Brout-Englert-Higgs mechanism in the electroweak interactions of the standard model. This phenomenon is analogous to magnetization and superconductivity in condensed matter physics. The basic idea was introduced to particle physics by Yoichiro Nambu, in particular, in the Nambu–Jona-Lasinio model, which is a solvable theory of composite bosons that exhibits dynamical spontaneous chiral symmetry when a 4-fermion coupling constant becomes sufficiently large. Nambu was awarded the 2008 Nobel prize in physics "for the discovery of the mechanism of spontaneous broken symmetry in subatomic physics".
In theoretical physics, scalar field theory can refer to a relativistically invariant classical or quantum theory of scalar fields. A scalar field is invariant under any Lorentz transformation.
In physics, a charge is any of many different quantities, such as the electric charge in electromagnetism or the color charge in quantum chromodynamics. Charges correspond to the time-invariant generators of a symmetry group, and specifically, to the generators that commute with the Hamiltonian. Charges are often denoted by , and so the invariance of the charge corresponds to the vanishing commutator , where is the Hamiltonian. Thus, charges are associated with conserved quantum numbers; these are the eigenvalues of the generator . A "charge" can also refer to a point-shaped object with an electric charge and a position, such as in the method of image charges.
In theoretical physics, the BRST formalism, or BRST quantization denotes a relatively rigorous mathematical approach to quantizing a field theory with a gauge symmetry. Quantization rules in earlier quantum field theory (QFT) frameworks resembled "prescriptions" or "heuristics" more than proofs, especially in non-abelian QFT, where the use of "ghost fields" with superficially bizarre properties is almost unavoidable for technical reasons related to renormalization and anomaly cancellation.
The light-front quantization of quantum field theories provides a useful alternative to ordinary equal-time quantization. In particular, it can lead to a relativistic description of bound systems in terms of quantum-mechanical wave functions. The quantization is based on the choice of light-front coordinates, where plays the role of time and the corresponding spatial coordinate is . Here, is the ordinary time, is one Cartesian coordinate, and is the speed of light. The other two Cartesian coordinates, and , are untouched and often called transverse or perpendicular, denoted by symbols of the type . The choice of the frame of reference where the time and -axis are defined can be left unspecified in an exactly soluble relativistic theory, but in practical calculations some choices may be more suitable than others.
In physics, a gauge theory is a type of field theory in which the Lagrangian, and hence the dynamics of the system itself, do not change under local transformations according to certain smooth families of operations. Formally, the Lagrangian is invariant under these transformations.
Time-translation symmetry or temporal translation symmetry (TTS) is a mathematical transformation in physics that moves the times of events through a common interval. Time-translation symmetry is the law that the laws of physics are unchanged under such a transformation. Time-translation symmetry is a rigorous way to formulate the idea that the laws of physics are the same throughout history. Time-translation symmetry is closely connected, via Noether's theorem, to conservation of energy. In mathematics, the set of all time translations on a given system form a Lie group.