Symbrion

Last updated
Symbrion
SymbrionBot.jpg
Commercial?No
Type of projectSwarm robotics
LocationEuropean Union
OwnerFunded by the European Commission
Established2008 (2008)
Closed2013 (2013)
StatusClosed

Symbrion (Symbiotic Evolutionary Robot Organisms) is a project funded by the European Commission between 2008 and 2013 to develop a framework in which a homogeneous swarm of miniature interdependent robots can co-assemble into a larger robotic organism to gain problem-solving momentum. [1] [2] [3]

Contents

One of the key aspects of Symbrion is inspired by the biological world: an artificial genome that allows storing and evolution of suboptimal configurations in order to increase the speed of adaptation.

The SYMBRION project does not start from zero; previous development and research from projects I-SWARM and the open-source SWARMROBOT serve as a mounting point. [4] A large part of the developments within Symbrion is open-source and open-hardware. [5]

Co-operating universities

See also

Related Research Articles

<span class="mw-page-title-main">Robot</span> Machine capable of carrying out a complex series of actions automatically

A robot is a machine—especially one programmable by a computer—capable of carrying out a complex series of actions automatically. A robot can be guided by an external control device, or the control may be embedded within. Robots may be constructed to evoke human form, but most robots are task-performing machines, designed with an emphasis on stark functionality, rather than expressive aesthetics.

<span class="mw-page-title-main">Charles University</span> Oldest and largest university in the Czech Republic

Charles University, also known as Charles University in Prague or historically as the University of Prague, is the oldest and largest university in the Czech Republic. It is one of the oldest universities in Europe in continuous operation. Today, the university consists of 17 faculties located in Prague, Hradec Králové, and Plzeň. Charles University belongs among the top three universities in Central and Eastern Europe. It is ranked around 200–300 in the world.

<span class="mw-page-title-main">Symbiosis</span> Close, long-term biological interaction between distinct organisms (usually species)

Symbiosis is any type of a close and long-term biological interaction between two biological organisms of different species, termed symbionts, be it mutualistic, commensalistic, or parasitic. In 1879, Heinrich Anton de Bary defined it as "the living together of unlike organisms". The term is sometimes used in the more restricted sense of a mutually beneficial interaction in which both symbionts contribute to each other's support.

<span class="mw-page-title-main">Stigmergy</span> Social network mechanism of indirect coordination

Stigmergy is a mechanism of indirect coordination, through the environment, between agents or actions. The principle is that the trace left in the environment by an individual action stimulates the performance of a succeeding action by the same or different agent. Agents that respond to traces in the environment receive positive fitness benefits, reinforcing the likelihood of these behaviors becoming fixed within a population over time.

<span class="mw-page-title-main">Swarm behaviour</span> Collective behaviour of a large number of (usually) self-propelled entities of similar size

Swarm behaviour, or swarming, is a collective behaviour exhibited by entities, particularly animals, of similar size which aggregate together, perhaps milling about the same spot or perhaps moving en masse or migrating in some direction. It is a highly interdisciplinary topic.

<span class="mw-page-title-main">University of Freiburg</span> Public university in Freiburg, Germany

The University of Freiburg, officially the Albert Ludwig University of Freiburg, is a public research university located in Freiburg im Breisgau, Baden-Württemberg, Germany. The university was founded in 1457 by the Habsburg dynasty as the second university in Austrian-Habsburg territory after the University of Vienna. Today, Freiburg is the fifth-oldest university in Germany, with a long tradition of teaching the humanities, social sciences and natural sciences and technology and enjoys a high academic reputation both nationally and internationally. The university is made up of 11 faculties and attracts students from across Germany as well as from over 120 other countries. Foreign students constitute about 18.2% of total student numbers.

Bio-inspired computing, short for biologically inspired computing, is a field of study which seeks to solve computer science problems using models of biology. It relates to connectionism, social behavior, and emergence. Within computer science, bio-inspired computing relates to artificial intelligence and machine learning. Bio-inspired computing is a major subset of natural computation.

<span class="mw-page-title-main">Micro air vehicle</span> Class of very small unmanned aerial vehicle

A micro air vehicle (MAV), or micro aerial vehicle, is a class of man-portable miniature UAVs whose size enables them to be used in low altitude, close-in support operations. Modern MAVs can be as small as 5 centimeters. Development is driven by commercial, research, government, and military purposes; with insect-sized aircraft reportedly expected in the future. The small craft allows remote observation of hazardous environments inaccessible to ground vehicles. MAVs have been built for hobby purposes such as aerial robotics contests and aerial photography.

Collaborative intelligence characterizes multi-agent, distributed systems where each agent, human or machine, is autonomously contributing to a problem solving network. Collaborative autonomy of organisms in their ecosystems makes evolution possible. Natural ecosystems, where each organism's unique signature is derived from its genetics, circumstances, behavior and position in its ecosystem, offer principles for design of next generation social networks to support collaborative intelligence, crowdsourcing individual expertise, preferences, and unique contributions in a problem solving process.

<span class="mw-page-title-main">Marco Dorigo</span>

Marco Dorigo is a research director for the Belgian Funds for Scientific Research and a co-director of IRIDIA, the artificial intelligence lab of the Université Libre de Bruxelles. He received a PhD in System and Information Engineering in 1992 from the Polytechnic University of Milan with a thesis titled Optimization, learning, and natural algorithms. He is the leading proponent of the ant colony optimization metaheuristic, and one of the founders of the swarm intelligence research field. Recently he got involved with research in swarm robotics: he is the coordinator of Swarm-bots: Swarms of self-assembling artifacts and of Swarmanoid: Towards humanoid robotic swarms, two swarm robotics projects funded by the Future and Emerging Technologies Program of the European Commission. He is also the founding editor and editor in chief of Swarm Intelligence, the principal peer-reviewed publication dedicated to reporting research and new developments in this multidisciplinary field.

Developmental robotics (DevRob), sometimes called epigenetic robotics, is a scientific field which aims at studying the developmental mechanisms, architectures and constraints that allow lifelong and open-ended learning of new skills and new knowledge in embodied machines. As in human children, learning is expected to be cumulative and of progressively increasing complexity, and to result from self-exploration of the world in combination with social interaction. The typical methodological approach consists in starting from theories of human and animal development elaborated in fields such as developmental psychology, neuroscience, developmental and evolutionary biology, and linguistics, then to formalize and implement them in robots, sometimes exploring extensions or variants of them. The experimentation of those models in robots allows researchers to confront them with reality, and as a consequence, developmental robotics also provides feedback and novel hypotheses on theories of human and animal development.

<span class="mw-page-title-main">Bielefeld University</span> Public university in Bielefeld, Germany

Bielefeld University is a public university in Bielefeld, Germany. Founded in 1969, it is one of the country's newer universities, and considers itself a "reform" university, following a different style of organization and teaching than the established universities. In particular, the university aims to "re-establish the unity between research and teaching", and so all its faculty teach courses in their area of research. The university also stresses a focus on interdisciplinary research, helped by the architecture, which encloses all faculties in one great structure. It is among the first of the German universities to switch some faculties to Bachelor/Master-degrees as part of the Bologna process.

<span class="mw-page-title-main">Technische Universität Darmstadt</span> Public university in Darmstadt, Germany

The Technische Universität Darmstadt, commonly known as TU Darmstadt, is a research university in the city of Darmstadt, Germany. It was founded in 1877 and received the right to award doctorates in 1899. In 1882, it was the first university in the world to set up a chair in electrical engineering. In 1883, the university founded the first faculty of electrical engineering and introduced the world's first degree course in electrical engineering. In 2004, it became the first German university to be declared as an autonomous university. TU Darmstadt has assumed a pioneering role in Germany. Computer science, electrical engineering, artificial intelligence, mechatronics, business informatics, political science and many more courses were introduced as scientific disciplines in Germany by Darmstadt faculty.

Modular self-reconfiguring robotic systems or self-reconfigurable modular robots are autonomous kinematic machines with variable morphology. Beyond conventional actuation, sensing and control typically found in fixed-morphology robots, self-reconfiguring robots are also able to deliberately change their own shape by rearranging the connectivity of their parts, in order to adapt to new circumstances, perform new tasks, or recover from damage.

<span class="mw-page-title-main">Peter Nordin</span> Swedish computer scientist (1965–2020)

Peter Nordin was a Swedish computer scientist, entrepreneur and author who has contributed to artificial intelligence, automatic programming, machine learning, and evolutionary robotics.

Intervention AUV or I-AUV is a type of autonomous underwater vehicle. Its characteristic feature is that it is capable of autonomous interventions on the subsea installations, a task usually carried out by remotely operated underwater vehicles (ROVs) or human divers.

Morphogenetic robotics generally refers to the methodologies that address challenges in robotics inspired by biological morphogenesis.

<span class="mw-page-title-main">Artificial life</span> Field of study

Artificial life is a field of study wherein researchers examine systems related to natural life, its processes, and its evolution, through the use of simulations with computer models, robotics, and biochemistry. The discipline was named by Christopher Langton, an American theoretical biologist, in 1986. In 1987 Langton organized the first conference on the field, in Los Alamos, New Mexico. There are three main kinds of alife, named for their approaches: soft, from software; hard, from hardware; and wet, from biochemistry. Artificial life researchers study traditional biology by trying to recreate aspects of biological phenomena.

Swarm robotic platforms apply swarm robotics in multi-robot collaboration. They take inspiration from nature. The main goal is to control a large number of robots to accomplish a common task/problem. Hardware limitation and cost of robot platforms limit current research in swarm robotics to mostly performed by simulation software. On the other hand, simulation of swarm scenarios that needs large numbers of agents is extremely complex and often inaccurate due to poor modelling of external conditions and limitation of computation.

<span class="mw-page-title-main">Integrated Unmanned Ground System</span> Unmanned ground vehicle

Integrated Modular Unmanned Ground System (UGS or iMUGS) is a European Union's Permanent Structured Cooperation (PESCO) project that aims to create a European standard unmanned ground system and develop scalable modular architecture for hybrid manned-unmanned systems, as well as increasing interoperability, situational awareness and speeding up decision making. The project is coordinated by Estonia, with 10 other European countries participating. It will use Milrem's existing THeMIS unmanned ground vehicle for different payloads.

References

  1. "Robots with a mind of their own". ITV News. 13 March 2008. Retrieved 10 August 2023.
  2. "Symbrion - Symbiotic Evolutionary Robot Organisms Project Seeks Self-Building Swarms". Science 2.0. 13 March 2008. Retrieved 10 August 2023.
  3. "SYMBRION - Symbiotic Evolutionary Robot Organisms". Technovelgy. 16 March 2008. Retrieved 10 August 2023.
  4. "Open-source micro-robotic project". Jasmine Swarm Robot Platform. Retrieved 10 August 2023.
  5. "Robot3D". launchpad.net. 10 August 2010. Retrieved 10 August 2023.