Biorobotics

Last updated

Biorobotics is an interdisciplinary science that combines the fields of biomedical engineering, cybernetics, and robotics to develop new technologies that integrate biology with mechanical systems to develop more efficient communication, alter genetic information, and create machines that imitate biological systems. [1]

Contents

Cybernetics

Cybernetics focuses on the communication and system of living organisms and machines that can be applied and combined with multiple fields of study such as biology, mathematics, computer science, engineering, and much more. [2]

This discipline falls under the branch of biorobotics because of its combined field of study between biological bodies and mechanical systems. Studying these two systems allow for advanced analysis on the functions and processes of each system as well as the interactions between them. [2]

History

Cybernetic theory is a concept that has existed for centuries, dating back to the era of Plato where he applied the term to refer to the "governance of people". The term cybernetique is seen in the mid 1800s used by physicist André-Marie Ampère. [2] [3] The term cybernetics was popularized in the late 1940s to refer to a discipline that touched on, but was separate, from established disciplines, such as electrical engineering, mathematics, and biology. [3]

Science

Cybernetics is often misunderstood because of the breadth of disciplines it covers. In the early 20th century, it was coined as an interdisciplinary field of study that combines biology, science, network theory, and engineering. Today, it covers all scientific fields with system related processes. The goal of cybernetics is to analyze systems and processes of any system or systems in an attempt to make them more efficient and effective. [2] [3]

Applications

Cybernetics is used as an umbrella term so applications extend to all systems related scientific fields such as biology, mathematics, computer science, engineering, management, psychology, sociology, art, and more. Cybernetics is used amongst several fields to discover principles of systems, adaptation of organisms, information analysis and much more. [4]

Genetic engineering

Genetic engineering is a field that uses advances in technology to modify biological organisms. Through different methods, scientists are able to alter the genetic material of microorganisms, plants and animals to provide them with desirable traits. For example, making plants grow bigger, better, and faster. [5] Genetic engineering is included in biorobotics because it uses new technologies to alter biology and change an organism's DNA for their and society's benefit. [6] [7]

History

Although humans have modified genetic material of animals and plants through artificial selection for millennia (such as the genetic mutations that developed teosinte into corn and wolves into dogs), genetic engineering refers to the deliberate alteration or insertion of specific genes to an organism's DNA. The first successful case of genetic engineering occurred in 1973 when Herbert Boyer and Stanley Cohen were able to transfer a gene with antibiotic resistance to a bacterium. [8] [9] [10]

Science

There are three main techniques used in genetic engineering: The plasmid method, the vector method and the biolistic method.

Plasmid method

This technique is used mainly for microorganisms such as bacteria. Through this method, DNA molecules called plasmids are extracted from bacteria and placed in a lab where restriction enzymes break them down. As the enzymes break the molecules down, some develop a rough edge that resembles that of a staircase which is considered ‘sticky’ and capable of reconnecting. These ‘sticky’ molecules are inserted into another bacteria where they will connect to the DNA rings with the altered genetic material. [11]

Vector method

The vector method is considered a more precise technique than the plasmid method as it involves the transfer of a specific gene instead of a whole sequence. In the vector method, a specific gene from a DNA strand is isolated through restriction enzymes in a laboratory and is inserted into a vector. Once the vector accepts the genetic code, it is inserted into the host cell where the DNA will be transferred. [11]

Biolistic method

The biolistic method is typically used to alter the genetic material of plants. This method embeds the desired DNA with a metallic particle such as gold or tungsten in a high speed gun. The particle is then bombarded into the plant. Due to the high velocities and the vacuum generated during bombardment, the particle is able to penetrate the cell wall and inserts the new DNA into the cell. [12]

Applications

Genetic engineering has many uses in the fields of medicine, research and agriculture. In the medical field, genetically modified bacteria are used to produce drugs such as insulin, human growth hormones and vaccines. In research, scientists genetically modify organisms to observe physical and behavioral changes to understand the function of specific genes. In agriculture, genetic engineering is extremely important as it is used by farmers to grow crops that are resistant to herbicides and to insects such as BTCorn. [13] [14]

Bionics

Bionics is a medical engineering field and a branch of biorobotics consisting of electrical and mechanical systems that imitate biological systems, such as prosthetics and hearing aids. It's a portmanteau that combines biology and electronics.

History

The history of bionics goes as far back in time as ancient Egypt. A prosthetic toe made out of wood and leather was found on the foot of a mummy. The time period of the mummy corpse was estimated to be from around the fifteenth century B.C. Bionics can also be witnessed in ancient Greece and Rome. Prosthetic legs and arms were made for amputee soldiers. In the early 16th century, a French military surgeon by the name of Ambroise Pare became a pioneer in the field of bionics. He was known for making various types of upper and lower prosthetics. One of his most famous prosthetics, Le Petit Lorrain, was a mechanical hand operated by catches and springs. During the early 19th century, Alessandro Volta further progressed bionics. He set the foundation for the creation of hearing aids with his experiments. He found that electrical stimulation could restore hearing by inserting an electrical implant to the saccular nerve of a patient's ear. In 1945, the National Academy of Sciences created the Artificial Limb Program, which focused on improving prosthetics since there were a large number of World War II amputee soldiers. Since this creation, prosthetic materials, computer design methods, and surgical procedures have improved, creating modern-day bionics. [15]

Science

Prosthetics

The important components that make up modern-day prosthetics are the pylon, the socket, and the suspension system. The pylon is the internal frame of the prosthetic that is made up of metal rods or carbon-fiber composites. The socket is the part of the prosthetic that connects the prosthetic to the person's missing limb. The socket consists of a soft liner that makes the fit comfortable, but also snug enough to stay on the limb. The suspension system is important in keeping the prosthetic on the limb. The suspension system is usually a harness system made up of straps, belts or sleeves that are used to keep the limb attached.

The operation of a prosthetic could be designed in various ways. The prosthetic could be body-powered, externally-powered, or myoelectrically-powered. Body-powered prosthetics consist of cables attached to a strap or harness, which is placed on the person's functional shoulder, allowing the person to manipulate and control the prosthetic as he or she deems fit. Externally-powered prosthetics consist of motors to power the prosthetic and buttons and switches to control the prosthetic. Myoelectrically-powered prosthetics are new, advanced forms of prosthetics where electrodes are placed on the muscles above the limb. The electrodes will detect the muscle contractions and send electrical signals to the prosthetic to move the prosthetic. The downside to this type of prosthetic is that if the sensors are not placed correctly on the limb then the electrical impulses will fail to move the prosthetic. [16] TrueLimb is a specific brand of prosthetics that uses myoelectrical sensors which enable a person to have control of their bionic limb. [16]

Hearing aids

Four major components make up the hearing aid: the microphone, the amplifier, the receiver, and the battery. The microphone takes in outside sound, turns that sound to electrical signals, and sends those signals to the amplifier. The amplifier increases the sound and sends that sound to the receiver. The receiver changes the electrical signal back into sound and sends the sound into the ear. Hair cells in the ear will sense the vibrations from the sound, convert the vibrations into nerve signals, and send it to the brain so the sounds can become coherent to the person. The battery simply powers the hearing aid. [17]

Applications

Cochlear Implant

Cochlear implants are a type of hearing aid for those who are deaf. Cochlear implants send electrical signals straight to the auditory nerve, the nerve responsible for sound signals, instead of just sending the signals to the ear canal like normal hearing aids.

Bone-Anchored Hearing Aids

These hearing aids are also used for people with severe hearing loss. They attach to the bones of the middle ear to create sound vibrations in the skull and send those vibrations to the cochlea.

Artificial sensing skin

This artificial sensing skin detects any pressure put on it and is meant for people who have lost any sense of feeling on parts of their bodies, such as diabetics with peripheral neuropathy.

Bionic eye

The bionic eye is a bioelectronic implant that restores vision for people with blindness.

The bionic eye, although isn't perfect yet, helped 5 individuals classified as legally blind help to make out letters again. [18]

As the retina has millions of photoreceptors it is very hard to replicate with technology. This is why this technology is not 100% effective yet but is being improved day by day. [18]

Orthopedic bionics

Orthopedic bionics consist of advanced bionic limbs that use a person's neuromuscular system to control the bionic limb. A new advancement in the comprehension of brain function has led to the development and implementation of brain-machine interfaces (BMIs). [19] BMIs allow for the processing of neural messaging between motor regions of the brain to muscles of a specific limb to initiate movement. [19] BMIs contribute greatly to the restoration of a person's independent movement who has a bionic limb and or an exoskeleton. [19]

Endoscopic robotics

These robotics can remove a polyp during a colonoscopy.

See also

Related Research Articles

<span class="mw-page-title-main">Biomedical engineering</span> Application of engineering principles and design concepts to medicine and biology

Biomedical engineering (BME) or medical engineering is the application of engineering principles and design concepts to medicine and biology for healthcare purposes. BME is also traditionally logical sciences to advance health care treatment, including diagnosis, monitoring, and therapy. Also included under the scope of a biomedical engineer is the management of current medical equipment in hospitals while adhering to relevant industry standards. This involves procurement, routine testing, preventive maintenance, and making equipment recommendations, a role also known as a Biomedical Equipment Technician (BMET) or as clinical engineering.

<span class="mw-page-title-main">Prosthesis</span> Artificial device that replaces a missing body part

In medicine, a prosthesis, or a prosthetic implant, is an artificial device that replaces a missing body part, which may be lost through trauma, disease, or a condition present at birth. Prostheses are intended to restore the normal functions of the missing body part. Amputee rehabilitation is primarily coordinated by a physiatrist as part of an inter-disciplinary team consisting of physiatrists, prosthetists, nurses, physical therapists, and occupational therapists. Prostheses can be created by hand or with computer-aided design (CAD), a software interface that helps creators design and analyze the creation with computer-generated 2-D and 3-D graphics as well as analysis and optimization tools.

Cyberware is a relatively new and unknown field. In science fiction circles, however, it is commonly known to mean the hardware or machine parts implanted in the human body and acting as an interface between the central nervous system and the computers or machinery connected to it.

<span class="mw-page-title-main">Synthetic biology</span> Interdisciplinary branch of biology and engineering

Synthetic biology (SynBio) is a multidisciplinary field of science that focuses on living systems and organisms, and it applies engineering principles to develop new biological parts, devices, and systems or to redesign existing systems found in nature.

<span class="mw-page-title-main">Bionics</span> Application of natural systems to technology

Bionics or biologically inspired engineering is the application of biological methods and systems found in nature to the study and design engineering systems and modern technology.

Neuroprosthetics is a discipline related to neuroscience and biomedical engineering concerned with developing neural prostheses. They are sometimes contrasted with a brain–computer interface, which connects the brain to a computer rather than a device meant to replace missing biological functionality.

Passive dynamics refers to the dynamical behavior of actuators, robots, or organisms when not drawing energy from a supply. Depending on the application, considering or altering the passive dynamics of a powered system can have drastic effects on performance, particularly energy economy, stability, and task bandwidth. Devices using no power source are considered "passive", and their behavior is fully described by their passive dynamics.

<span class="mw-page-title-main">Wetware computer</span> Computer composed of organic material

A wetware computer is an organic computer composed of organic material "wetware" such as "living" neurons. Wetware computers composed of neurons are different than conventional computers because they use biological materials, and offer the possibility of substantially more energy-efficient computing. While a wetware computer is still largely conceptual, there has been limited success with construction and prototyping, which has acted as a proof of the concept's realistic application to computing in the future. The most notable prototypes have stemmed from the research completed by biological engineer William Ditto during his time at the Georgia Institute of Technology. His work constructing a simple neurocomputer capable of basic addition from leech neurons in 1999 was a significant discovery for the concept. This research acted as a primary example driving interest in the creation of these artificially constructed, but still organic brains.

Neural engineering is a discipline within biomedical engineering that uses engineering techniques to understand, repair, replace, or enhance neural systems. Neural engineers are uniquely qualified to solve design problems at the interface of living neural tissue and non-living constructs.

Bio-mechatronics is an applied interdisciplinary science that aims to integrate biology and mechatronics. It also encompasses the fields of robotics and neuroscience. Biomechatronic devices cover a wide range of applications, from developing prosthetic limbs to engineering solutions concerning respiration, vision, and the cardiovascular system.

Biomechanical may refer to:

<span class="mw-page-title-main">Biological engineering</span> Application of biology and engineering to create useful products

Biological engineering or bioengineering is the application of principles of biology and the tools of engineering to create usable, tangible, economically viable products. Biological engineering employs knowledge and expertise from a number of pure and applied sciences, such as mass and heat transfer, kinetics, biocatalysts, biomechanics, bioinformatics, separation and purification processes, bioreactor design, surface science, fluid mechanics, thermodynamics, and polymer science. It is used in the design of medical devices, diagnostic equipment, biocompatible materials, renewable energy, ecological engineering, agricultural engineering, process engineering and catalysis, and other areas that improve the living standards of societies.

A hybrot is a cybernetic organism in the form of a robot controlled by a computer consisting of both electronic and biological elements. The biological elements are typically rat neurons connected to a computer chip.

Peter Kyberd is a biomedical engineer specialising in rehabilitation. He is currently head of the School of the Built and Natural Environment at University of Derby. He serves on the editorial board of the Journal of Prosthetics and Orthotics, and the executive board of the national members society of the International Society of Prosthetics and Orthotics (ISPO). His main research activity has been the practical application of technology to rehabilitation and engineering in Orthopaedics. He has chaired both international upper limb research conferences; MEC and TIPS.

<span class="mw-page-title-main">Glossary of robotics</span> List of definitions of terms and concepts commonly used in the study of robotics

Robotics is the branch of technology that deals with the design, construction, operation, structural disposition, manufacture and application of robots. Robotics is related to the sciences of electronics, engineering, mechanics, and software.

<span class="mw-page-title-main">Cyborg</span> Being with both organic and biomechatronic body parts

A cyborg —a portmanteau of cybernetic and organism—is a being with both organic and biomechatronic body parts. The term was coined in 1960 by Manfred Clynes and Nathan S. Kline. In contrast to biorobots and androids, the term cyborg applies to a living organism that has restored function or enhanced abilities due to the integration of some artificial component or technology that relies on feedback.

The following outline is provided as an overview of and topical guide to robotics:

The following outline is provided as an overview of and topical guide to biophysics:

Álvaro Ríos Poveda is a Colombian electronic engineer, university professor, and researcher who specializes in biomedical engineering and mechatronics. He has performed research on myoelectric prostheses, sensory feedback, and bionic vision technologies.

References

  1. Dario, Paolo (15 July 2005). "Journal of the Robotics Society of Japan". 23 (5): 552–554. doi: 10.7210/jrsj.23.552 .{{cite journal}}: Cite journal requires |journal= (help)
  2. 1 2 3 4 "Cybernetics", Wikipedia, 2020-03-29, retrieved 2020-04-03
  3. 1 2 3 "Cybernetics — A Definition". www.pangaro.com. Retrieved 2020-04-03.
  4. "Cybernetics - Encyclopedia of Mathematics". www.encyclopediaofmath.org. Retrieved 2020-04-03.
  5. Turner, Lisa (June 2001). "Weird science: what you need to know about genetic engineering". library.brookdalecc.edu. Retrieved 2023-04-24.
  6. "What is genetic engineering?". yourgenome. Retrieved 2020-04-03.
  7. Mulligan, Pamela K. (2021). "Genetic engineering". Access Science. doi:10.1036/1097-8542.285000.
  8. Rangel, Gabriel (2015-08-09). "From Corgis to Corn: A Brief Look at the Long History of GMO Technology". Science in the News. Harvard University. Retrieved 2020-04-03.
  9. "History of genetic engineering". Royal Society Te Apārangi. Retrieved 2020-04-03.
  10. "Genetic Engineering". Genome.gov. Retrieved 2020-04-03.
  11. 1 2 "Methods of Genetic Engineering". mrlloyder. Retrieved 2020-04-03.
  12. "Biolistic Transformation - an overview | ScienceDirect Topics". www.sciencedirect.com. Retrieved 2020-04-03.
  13. "7.23B: Applications of Genetic Engineering". Biology LibreTexts. 2017-06-06. Retrieved 2020-04-03.
  14. "genetic engineering | Definition, Process, & Uses". Encyclopedia Britannica. Retrieved 2020-04-03.
  15. "The History of Bionics". Bionic Medicine. 2012-12-10. Retrieved 2020-04-03.
  16. 1 2 "How Prosthetic Arms Are Controlled, and How TrueLimb is Different". Unlimited Tomorrow. 2021-08-04. Retrieved 2023-11-15.
  17. "Hearing Aid Basics". HowStuffWorks. 2007-08-23. Retrieved 2020-04-03.
  18. 1 2 Lu, Donna (2019). "Bionic eye helps people who are blind read letters again". New Scientist. 243 (3241): 15. Bibcode:2019NewSc.243...15L. doi:10.1016/S0262-4079(19)31410-1. S2CID   201259631.
  19. 1 2 3 Pandarinath, Chethan; Bensmaia, Sliman J. (2022-04-01). "The science and engineering behind sensitized brain-controlled bionic hands". Physiological Reviews. 102 (2): 551–604. doi:10.1152/physrev.00034.2020. ISSN   0031-9333. PMC   8742729 . PMID   34541898.