Continuum robot

Last updated

A continuum robot is a type of robot that is characterised by infinite degrees of freedom and number of joints.[ citation needed ] These characteristics allow continuum manipulators to adjust and modify their shape at any point along their length, granting them the possibility to work in confined spaces and complex environments where standard rigid-link robots cannot operate. [1] In particular, we can define a continuum robot as an actuatable structure whose constitutive material forms curves with continuous tangent vectors. [2] This is a fundamental definition that allows to distinguish between continuum robots and snake-arm robots or hyper-redundant manipulators: the presence of rigid links and joints allows them to only approximately perform curves with continuous tangent vectors.

Contents

The design of continuum robots is bioinspired, as the intent is to resemble biological trunks, snakes and tentacles. Several concepts of continuum robots have been commercialised and can be found in many different domains of application, ranging from the medical field to undersea exploration.[ citation needed ]

Classification

Continuum robots can be categorised according to two main criteria: structure and actuation. [2]

Structure

The main characteristic of the design of continuum robots is the presence of a continuously curving core structure, named backbone, whose shape can be actuated. The backbone must also be compliant, meaning that the backbone yields smoothly to external loads. [3]

According to the design principles chosen for the continuum manipulator, we can distinguish between:

Actuation

The actuation strategy of continuum manipulators can be distinguished between extrinsic or intrinsic actuation, depending on where the actuation happens:

Advantages

The particular design of continuum robots offers several advantages with respect to rigid-link robots. First of all, as already said, continuum robots can more easily operate in environments that require a high level of dexterity, adaptability and flexibility. Moreover, the simplicity of their structure makes continuum robots more prone to miniaturisation. The rise of continuum robots has also paved the way for the development of soft continuum manipulators. These continuum manipulators are made of highly compliant materials that are flexible and can adapt and deform according to the surrounding environment. The "softness" of their material grants higher safety in human-robot interactions. [8]

Disadvantages

The particular design of continuum robots also introduces many challenges. To properly and safely use continuum robots, it is crucial to have an accurate force and shape sensing system. Traditionally, this is done using cameras that are not suitable for some of the applications of continuum robots (e.g. minimally invasive surgery), or using electromagnetic sensors that are however disturbed by the presence of magnetic objects in the environment. To solve this issue, in the last years fiber-Bragg-grating sensors have been proposed as a possible alternative and have shown promising results. [9] [10] It is also necessary to notice that while the mechanical properties of rigid-link robots are fully understood, the comprehension of the behaviour and properties of continuum robots is still subject of study and debate. [1] This poses new challenges in developing accurate models and control algorithms for this kind of robots.

Modelling

Creating an accurate model that can predict the shape of a continuum robot allows to properly control the robot's shape. [11] There are three main approaches to model continuum robots:

Sensing

To develop accurate control algorithms, it is necessary to complement the presented modelling techniques with real time shape sensing. The following options are currently available:

Control strategies

The control strategies can be distinguished in static and dynamic; the first one is based on the steady-state assumption, while the latter also considers the dynamic behaviour of the continuum robot. We can also differentiate between model-based controllers, that depend on a model of the robot, and model-free, that learn the robot's behaviour from data. [20]

Hybrid approaches, that combine model-free and model-based controllers, can also present a valid alternative.

Applications

Continuum robots have been applied in many different fields.

Medical

Continuum robots have been widely applied in the medical field, in particular for minimally invasive surgery. [1] For example, Ion by Intuitive is a robotic-assisted endoluminal platform for minimally invasive peripheral lung biopsy, that allows to reach nodules located in peripheral areas of the lungs that cannot be reached by standard instrumentations; this allows to perform early-stage diagnoses of cancer.

Hazardous places

Continuum robots offer the possibility of completing tasks in hazardous and hostile environments. For example, a quadruped robot with continuum limbs has been developed: it can walk, crawl, trot and propel to whole arm grasping to negotiate difficult obstacles. [21]

Space

NASA has developed a continuum manipulator, named Tendril, that can extend into crevasses and under thermal blankets to access areas that would be otherwise inaccessible with conventional means. [22]

Subsea

The AMADEUS project developed a dextrous underwater robot for grasping and manipulation tasks, while the FLAPS project created propulsion systems that replicate the mechanisms of fish swimming. [23]

See also

Related Research Articles

<span class="mw-page-title-main">Simultaneous localization and mapping</span> Computational navigational technique used by robots and autonomous vehicles

Simultaneous localization and mapping (SLAM) is the computational problem of constructing or updating a map of an unknown environment while simultaneously keeping track of an agent's location within it. While this initially appears to be a chicken or the egg problem, there are several algorithms known to solve it in, at least approximately, tractable time for certain environments. Popular approximate solution methods include the particle filter, extended Kalman filter, covariance intersection, and GraphSLAM. SLAM algorithms are based on concepts in computational geometry and computer vision, and are used in robot navigation, robotic mapping and odometry for virtual reality or augmented reality.

<span class="mw-page-title-main">Dario Floreano</span> Swiss-Italian roboticist and engineer

Dario Floreano is a Swiss-Italian roboticist and engineer. He is Director of the Laboratory of Intelligent System (LIS) at the École Polytechnique Fédérale de Lausanne in Switzerland and was the founding director of the Swiss National Centre of Competence in Research (NCCR) Robotics.

Robot calibration is a process used to improve the accuracy of robots, particularly industrial robots which are highly repeatable but not accurate. Robot calibration is the process of identifying certain parameters in the kinematic structure of an industrial robot, such as the relative position of robot links. Depending on the type of errors modeled, the calibration can be classified in three different ways. Level-1 calibration only models differences between actual and reported joint displacement values,. Level-2 calibration, also known as kinematic calibration, concerns the entire geometric robot calibration which includes angle offsets and joint lengths. Level-3 calibration, also called a non-kinematic calibration, models errors other than geometric defaults such as stiffness, joint compliance, and friction. Often Level-1 and Level-2 calibration are sufficient for most practical needs.

Modular self-reconfiguring robotic systems or self-reconfigurable modular robots are autonomous kinematic machines with variable morphology. Beyond conventional actuation, sensing and control typically found in fixed-morphology robots, self-reconfiguring robots are also able to deliberately change their own shape by rearranging the connectivity of their parts, in order to adapt to new circumstances, perform new tasks, or recover from damage.

A virtual fixture is an overlay of augmented sensory information upon a user's perception of a real environment in order to improve human performance in both direct and remotely manipulated tasks. Developed in the early 1990s by Louis Rosenberg at the U.S. Air Force Research Laboratory (AFRL), Virtual Fixtures was a pioneering platform in virtual reality and augmented reality technologies.

<span class="mw-page-title-main">Rapidly exploring random tree</span> Search algorithm

A rapidly exploring random tree (RRT) is an algorithm designed to efficiently search nonconvex, high-dimensional spaces by randomly building a space-filling tree. The tree is constructed incrementally from samples drawn randomly from the search space and is inherently biased to grow towards large unsearched areas of the problem. RRTs were developed by Steven M. LaValle and James J. Kuffner Jr. They easily handle problems with obstacles and differential constraints and have been widely used in autonomous robotic motion planning.

An MRI robot is a medical robot capable of operating within a magnetic resonance imaging (MRI) scanner for the purpose of performing or assisting in image-guided interventions (IGI).

<span class="mw-page-title-main">Robotics</span> Design, construction, use, and application of robots

Robotics is the interdisciplinary study and practice of the design, construction, operation, and use of robots.

Tendon-driven robots (TDR) are robots whose limbs mimic biological musculoskeletal systems. They use plastic straps to mimic muscles and tendons. Such robots are claimed to move in a "more natural" way than traditional robots that use rigid metal or plastic limbs controlled by geared actuators. TDRs can also help understand how biomechanics relates to embodied intelligence and cognition.

<span class="mw-page-title-main">Kilobot</span>

The Kilobot is a 3.3 cm tall low-cost swarm robot developed by Radhika Nagpal and Michael Rubenstein at Harvard University. They can act in groups, up to a thousand, to execute commands programmed by users that could not be executed by individual robots. A problem with research on robot collectives is that the cost of individual units is high. The Kilobot's total cost of parts is under $15. In addition to low cost, it has applications such as collective transport, human-swarm interaction, and shape self-assembly.

Bradley James Nelson is an American roboticist and entrepreneur. He has been the Professor of Robotics and Intelligent Systems at ETH Zurich since 2002 and is known for his research in microrobotics, nanorobotics, and medical robotics.

Robotic prosthesis control is a method for controlling a prosthesis in such a way that the controlled robotic prosthesis restores a biologically accurate gait to a person with a loss of limb. This is a special branch of control that has an emphasis on the interaction between humans and robotics.

<span class="mw-page-title-main">Soft robotics</span> Subfield of robotics

Soft robotics is a subfield of robotics that concerns the design, control, and fabrication of robots composed of compliant materials, instead of rigid links. In contrast to rigid-bodied robots built from metals, ceramics and hard plastics, the compliance of soft robots can improve their safety when working in close contact with humans.

The term “soft robots” designs a broad class of robotic systems whose architecture includes soft elements, with much higher elasticity than traditional rigid robots. Articulated Soft Robots are robots with both soft and rigid parts, inspired to the muscloloskeletal system of vertebrate animals – from reptiles to birds to mammalians to humans. Compliance is typically concentrated in actuators, transmission and joints while structural stability is provided by rigid or semi-rigid links.

<span class="mw-page-title-main">Margarita Chli</span> Greek computer vision and robotics researcher

Margarita Chli is an assistant professor and leader of the Vision for Robotics Lab at ETH Zürich in Switzerland. Chli is a leader in the field of computer vision and robotics and was on the team of researchers to develop the first fully autonomous helicopter with onboard localization and mapping. Chli is also the Vice Director of the Institute of Robotics and Intelligent Systems and an Honorary Fellow of the University of Edinburgh in the United Kingdom. Her research currently focuses on developing visual perception and intelligence in flying autonomous robotic systems.

A Contact Region is a concept in robotics which describes the region between an object and a robot’s end effector. This is used in object manipulation planning, and with the addition of sensors built into the manipulation system, can be used to produce a surface map or contact model of the object being grasped.

CoppeliaSim, formerly known as V-REP, is a robot simulator used in industry, education and research. It was originally developed within Toshiba R&D and is currently being actively developed and maintained by Coppelia Robotics AG, a small company located in Zurich, Switzerland.

In robotics, Cartesian parallel manipulators are manipulators that move a platform using parallel-connected kinematic linkages ('limbs') lined up with a Cartesian coordinate system. Multiple limbs connect the moving platform to a base. Each limb is driven by a linear actuator and the linear actuators are mutually perpendicular. The term 'parallel' here refers to the way that the kinematic linkages are put together, it does not connote geometrically parallel; i.e., equidistant lines.

<span class="mw-page-title-main">Asynchronous multi-body framework</span> Robotic simulator

Asynchronous multi-body framework (AMBF) is an open-source 3D versatile simulator for robots developed in April 2019. This multi-body framework provides a real-time dynamic simulation of multi-bodies such as robots, free bodies, and multi-link puzzles, paired with real-time haptic interaction with various input devices. The framework integrates a real surgeon master console, haptic or not, to control simulated robots in real-time. This feature results in the simulator being used in real-time training applications for surgical and non-surgical tasks. It offers the possibility to interact with soft bodies to simulate surgical tasks where tissues are subject to deformations. It also provides a Python Client to interact easily with the simulated bodies and train neural networks on real-time data with in-loop simulation. It includes a wide range of robots, grippers, sensors, puzzles, and soft bodies. Each simulated object is represented as an afObject; likewise, the simulation world is represented as an afWorld. Both utilize two communication interfaces: state and command. Through the State command, the object can send data outside the simulation environment, while the Command allows to apply commands to the underlying afObject.

<span class="mw-page-title-main">Peristaltic robot</span> Peristaltic robot based on earthworm

A peristaltic robot, also known as a worm-bot, is a robot that uses peristaltic locomotion to move, mimicking the movement of earthworms. Peristaltic locomotion relies on compressions and expansions of the metameres, or body segments, of earthworms. This method of movement is especially effective in navigating through narrow and intricate surfaces, making it particularly suitable for small millimeter-scale robots. Peristaltic robots have a wide range of applications, including endoscopy, mining operations, and pipe inspections.

References

  1. 1 2 3 da Veiga, Tomas; Chandler, James H; Lloyd, Peter; Pittiglio, Giovanni; Wilkinson, Nathan J; Hoshiar, Ali K; Harris, Russell A; Valdastri, Pietro (2020-08-03). "Challenges of continuum robots in clinical context: a review". Progress in Biomedical Engineering. 2 (3): 032003. doi: 10.1088/2516-1091/ab9f41 . ISSN   2516-1091. S2CID   225400772.
  2. 1 2 Burgner-Kahrs, Jessica; Rucker, D. Caleb; Choset, Howie (December 2015). "Continuum Robots for Medical Applications: A Survey". IEEE Transactions on Robotics. 31 (6): 1261–1280. doi:10.1109/TRO.2015.2489500. ISSN   1552-3098. S2CID   9660483.
  3. 1 2 Walker, Ian D. (2013-07-16). "Continuous Backbone "Continuum" Robot Manipulators". ISRN Robotics. 2013: 1–19. doi: 10.5402/2013/726506 .
  4. Bajo, Andrea; Simaan, Nabil (April 2016). "Hybrid motion/force control of multi-backbone continuum robots". The International Journal of Robotics Research. 35 (4): 422–434. doi:10.1177/0278364915584806. ISSN   0278-3649. S2CID   206500774.
  5. Chen, Gang; Pham, Minh Tu; Redarce, Tanneguy (2008), Lee, Sukhan; Suh, Il Hong; Kim, Mun Sang (eds.), "A Guidance Control Strategy for Semi-autonomous Colonoscopy Using a Continuum Robot", Recent Progress in Robotics: Viable Robotic Service to Human: An Edition of the Selected Papers from the 13th International Conference on Advanced Robotics, Lecture Notes in Control and Information Sciences, Berlin, Heidelberg: Springer, vol. 370, pp. 63–78, doi:10.1007/978-3-540-76729-9_6, ISBN   978-3-540-76729-9
  6. Ikuta, K.; Ichikawa, H.; Suzuki, K.; Yajima, D. (2006). "Multi-degree of freedom hydraulic pressure driven safety active catheter". Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006. Orlando, FL, USA: IEEE. pp. 4161–4166. doi:10.1109/ROBOT.2006.1642342. ISBN   978-0-7803-9505-3. S2CID   1646994.
  7. Jayender, J.; Patel, R.V.; Nikumb, S. (2009-09-01). "Robot-assisted Active Catheter Insertion: Algorithms and Experiments". The International Journal of Robotics Research. 28 (9): 1101–1117. doi:10.1177/0278364909103785. ISSN   0278-3649. S2CID   206500027.
  8. Rus, Daniela; Tolley, Michael T. (May 2015). "Design, fabrication and control of soft robots". Nature. 521 (7553): 467–475. Bibcode:2015Natur.521..467R. doi:10.1038/nature14543. hdl: 1721.1/100772 . ISSN   1476-4687. PMID   26017446. S2CID   217952627.
  9. Roesthuis, Roy J.; Janssen, Sander; Misra, Sarthak (November 2013). "On using an array of fiber Bragg grating sensors for closed-loop control of flexible minimally invasive surgical instruments". 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems (PDF). Tokyo: IEEE. pp. 2545–2551. doi:10.1109/IROS.2013.6696715. ISBN   978-1-4673-6358-7. S2CID   13551100.
  10. Ryu, Seok Chang; Dupont, Pierre E. (May 2014). "FBG-based shape sensing tubes for continuum robots". 2014 IEEE International Conference on Robotics and Automation (ICRA). Hong Kong, China: IEEE. pp. 3531–3537. doi:10.1109/ICRA.2014.6907368. ISBN   978-1-4799-3685-4. S2CID   15064329.
  11. 1 2 Jones, Bryan A.; Gray, Ricky L.; Turlapati, Krishna (October 2009). "Three dimensional statics for continuum robotics". 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems. St. Louis, MO, USA: IEEE. pp. 2659–2664. doi:10.1109/IROS.2009.5354199. ISBN   978-1-4244-3803-7. S2CID   17031584.
  12. Ghafoori, Morteza; Keymasi Khalaji, Ali (2020-12-01). "Modeling and experimental analysis of a multi-rod parallel continuum robot using the Cosserat theory". Robotics and Autonomous Systems. 134: 103650. doi:10.1016/j.robot.2020.103650. ISSN   0921-8890. S2CID   225025768.
  13. Rao, Priyanka; Peyron, Quentin; Lilge, Sven; Burgner-Kahrs, Jessica (2021). "How to Model Tendon-Driven Continuum Robots and Benchmark Modelling Performance". Frontiers in Robotics and AI. 7: 630245. doi: 10.3389/frobt.2020.630245 . ISSN   2296-9144. PMC   7885639 . PMID   33604355.
  14. Roesthuis, Roy J.; Misra, Sarthak (April 2016). "Steering of Multisegment Continuum Manipulators Using Rigid-Link Modeling and FBG-Based Shape Sensing". IEEE Transactions on Robotics. 32 (2): 372–382. doi:10.1109/TRO.2016.2527047. ISSN   1552-3098. S2CID   17902850.
  15. Shi, Chaoyang; Luo, Xiongbiao; Qi, Peng; Li, Tianliang; Song, Shuang; Najdovski, Zoran; Fukuda, Toshio; Ren, Hongliang (August 2017). "Shape Sensing Techniques for Continuum Robots in Minimally Invasive Surgery: A Survey". IEEE Transactions on Biomedical Engineering. 64 (8): 1665–1678. doi:10.1109/TBME.2016.2622361. ISSN   0018-9294. PMID   27810796. S2CID   26514168.
  16. Dore, Alessio; Smoljkic, Gabrijel; Poorten, Emmanuel Vander; Sette, Mauro; Sloten, Jos Vander; Yang, Guang-Zhong (October 2012). "Catheter navigation based on probabilistic fusion of electromagnetic tracking and physically-based simulation". 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems. Vilamoura-Algarve, Portugal: IEEE. pp. 3806–3811. doi:10.1109/IROS.2012.6386139. ISBN   978-1-4673-1736-8. S2CID   17183408.
  17. Xu, Ran; Asadian, Ali; Naidu, Anish S.; Patel, Rajni V. (May 2013). "Position control of concentric-tube continuum robots using a modified Jacobian-based approach". 2013 IEEE International Conference on Robotics and Automation. Karlsruhe, Germany: IEEE. pp. 5813–5818. doi:10.1109/ICRA.2013.6631413. ISBN   978-1-4673-5643-5. S2CID   580594.
  18. Guo, Hao; Ju, Feng; Cao, Yanfei; Qi, Fei; Bai, Dongming; Wang, Yaoyao; Chen, Bai (2019-01-01). "Continuum robot shape estimation using permanent magnets and magnetic sensors". Sensors and Actuators A: Physical. 285: 519–530. doi:10.1016/j.sna.2018.11.030. ISSN   0924-4247. S2CID   117531270.
  19. Ozel, Selim; Skorina, Erik H.; Luo, Ming; Tao, Weijia; Chen, Fuchen; Yixiao Pan; Onal, Cagdas D. (May 2016). "A composite soft bending actuation module with integrated curvature sensing". 2016 IEEE International Conference on Robotics and Automation (ICRA). Stockholm, Sweden: IEEE. pp. 4963–4968. doi:10.1109/ICRA.2016.7487703. ISBN   978-1-4673-8026-3. S2CID   6366153.
  20. George Thuruthel, Thomas; Ansari, Yasmin; Falotico, Egidio; Laschi, Cecilia (April 2018). "Control Strategies for Soft Robotic Manipulators: A Survey". Soft Robotics. 5 (2): 149–163. doi: 10.1089/soro.2017.0007 . hdl: 11382/521074 . ISSN   2169-5172. PMID   29297756.
  21. Godage, Isuru S.; Nanayakkara, Thrishantha; Caldwell, Darwin G. (October 2012). "Locomotion with continuum limbs". 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems. Vilamoura-Algarve, Portugal: IEEE. pp. 293–298. doi:10.1109/IROS.2012.6385810. ISBN   978-1-4673-1736-8. S2CID   11689025.
  22. Buckingham, Rob; Graham, Andrew (2003-09-08). "Snake-Arm Robots – A New Tool for the Aerospace Industry". SAE Technical Paper Series. Warrendale, PA: SAE International. 1. doi:10.4271/2003-01-2952.
  23. Davies, J.B.C.; Lane, D.M.; Robinson, G.C.; O'Brien, D.J.; Pickett, M.; Sfakiotakis, M.; Deacon, B. (1998). "Subsea applications of continuum robots". Proceedings of 1998 International Symposium on Underwater Technology. Tokyo, Japan: IEEE. pp. 363–369. doi:10.1109/UT.1998.670127. ISBN   978-0-7803-4273-6. S2CID   111200462.