This article may be in need of reorganization to comply with Wikipedia's layout guidelines .(April 2014) |
Fed-batch culture is, in the broadest sense, defined as an operational technique in biotechnological processes where one or more nutrients (substrates) are fed (supplied) to the bioreactor during cultivation and in which the product(s) remain in the bioreactor until the end of the run. [1] An alternative description of the method is that of a culture in which "a base medium supports initial cell culture and a feed medium is added to prevent nutrient depletion". [2] It is also a type of semi-batch culture. In some cases, all the nutrients are fed into the bioreactor. The advantage of the fed-batch culture is that one can control concentration of fed-substrate in the culture liquid at arbitrarily desired levels (in many cases, at low levels).
Generally speaking, fed-batch culture is superior to conventional batch culture when controlling concentrations of a nutrient (or nutrients) affects the yield or productivity of the desired metabolite.
The types of bioprocesses for which fed-batch culture is effective can be summarized as follows:
1. Substrate inhibition[1]
Nutrients such as methanol, ethanol, acetic acid, and aromatic compounds inhibit the growth of microorganisms even at relatively low concentrations. By adding such substrates properly lag-time can be shortened and the inhibition of the cell growth markedly reduced.
2. High cell density (High cell concentration)[1]
In a batch culture, to achieve very high cell concentrations, e.g. 50-100 g of dry cells/L, high initial concentrations of the nutrients in the medium are needed. At such high concentrations, the nutrients become inhibitory, even though they have no such effect at the normal concentrations used in batch cultures.
3. Glucose effect (Crabtree effect)[1]
In the production of baker's yeast from malt wort or molasses it has been recognized since early 1900s that ethanol is produced even in the presence of sufficient dissolved oxygen (DO) if an excess of sugar is present in the culture liquid. Ethanol is a main cause of low cell yield. Aerobic ethanol formation in the presence of glucose concentration is known as glucose effect or Crabtree effect. To reduce this effect, a fed-batch process is generally employed for baker's yeast production. In aerobic cultures of Escherichia coli and Bacillus subtilis, organic acids such as acetic acid, (and in lesser amounts, lactic acid and formic acid), are produced as byproducts when sugar concentration is high, and these acids inhibit cell growth as well as show deteriorating effect on the metabolic activities. The formation of these acids are called bacterial Crabtree effects.
4. Catabolite repression [1]
When a microorganism is provided with a rapidly metabolizable carbon-energy source such as glucose, the resulting increase in the intracellular concentration of ATP leads to the repression of enzyme(s) biosynthesis, thus causing a slower metabolization of the energy source. This phenomenon is known as catabolite repression. Many enzymes, especially those involved in catabolic pathways, are subject to this repressive regulation. A powerful method of overcoming the catabolite repression in the enzyme biosynthesis is a fed-batch culture in which glucose concentration in the culture liquid is kept low, where growth is restricted, and the enzyme biosynthesis is derepressed. Slow feeding of glucose in penicillin fermentation by Penicillium chrysogenum is a classical example in the category.
5. Auxotrophic mutants [1]
In a microbial process employing an auxotrophic mutant (nutritionally requiring mutant), excess supply of the required nutrient results in abundant cell growth with little accumulation of the desired metabolite due to feedback inhibition and /or end-product repression. Starvation of the required nutrient, however, lowers cell growth as well as the overall production of the desired metabolite, as the production rate is usually proportional to the cell concentration. In such a bioprocess, the accumulation of the desired metabolite can be maximized by growing the mutant on a limited amount of the required nutrient. To cultivate the mutant on a low concentration of the required nutrient, it is fed to the batch culture at a controlled rate. This technique is often used in industrial amino acid productions with the auxotrophic mutants. An example is lysine production with homoserine- or threonine/methionine-requiring mutant of Corynebacterium glutamicum being lacking for homoserine dehydrogenase gene.
6. Expression control of a gene with a repressible promoter
Transcription of a gene having a repressible promoter upstream of the open reading frame is repressed by combination of the so-called holo-repressor with the operator region on the DNA. When a specified chemical compound exists in the culture liquid, the compound (or its metabolite) in the cells combines as co-repressor with an apo-repressor (a kind of transcription factor) to form the holo-repressor. Keeping the concentration of this compound as low as possible (while still allowing for sufficient cell growth) permits continued expression of the regulated gene. Fed-batch culture is a powerful technique to do so. Examples of the repressible promoter are trp promoter and phoA promoter.
7. Extension of operation time, supplement of water lost by evaporation, and decreasing viscosity of culture broth[1]
The fed-batch strategy is typically used in bio-industrial processes to reach a high cell density in the bioreactor. [3] [4] [5] [6] Mostly the feed solution is highly concentrated to avoid dilution of the bioreactor. Production of heterologous proteins by fed-batch cultures of recombinant microorganisms have been extensively studied. [7] [8] [9] [10]
The controlled addition of the nutrient directly affects the growth rate of the culture and helps to avoid overflow metabolism (formation of side metabolites, such as acetate for Escherichia coli , lactic acid in mammalian cell cultures, ethanol in Saccharomyces cerevisiae ), oxygen limitation (anaerobiosis). [11] [12]
The simplest fed-batch culture is the one in which the feed rate of a growth-limiting substrate is constant, i.e. the feed rate is invariant during the culture. This case is shown in the graph (here the culture volume is variable). This type of the fed-batch culture is named constantly-fed-batch culture (CFBC), and is well established mathematically [13] and experimentally. [14] In the CFBC, both cases of fixed-volume CFBC and variable-volume CFBC were studied.
Under ideal condition, cells grow exponentially. If the feed rate of the growth-limiting substrate is increased in proportion to the exponential growth rate of the cells, it is possible to maintain the cells' specific growth rate for a long time while keeping the substrate concentration in the culture liquid at a constant level. The required feed rate (volumetric or mass) must be increased exponentially with time so that this mode of fed-batch culture is called exponentially-fed-batch culture (EFBC). [15]
Substrate limitation offers the possibility to control the reaction rates to avoid technological limitations connected to the cooling of the reactor and oxygen transfer. Substrate limitation also allows the metabolic control, to avoid osmotic effects, catabolite repression and overflow metabolism of side products. [16] [17] [18]
Different strategies can be used to control the growth in a fed-batch process:
Control Parameter | Control Principle |
---|---|
DOT (pO2) | DOstat (DOT= constant), F~DOT |
Oxygen uptake rate (OUR) | OUR=constant, F~OUR |
Glucose | on-line measurement of glucose (FIA), glucose=constant |
Acetate | on-line measurement of acetate (FIA), acetate=constant |
pH (pHstat) | F~pH (acidification is connected to high glucose) |
Ammonia | on-line measurement of ammonia (FIA), ammonia=constant |
Temperature | T adapted according to OUR or pO2 |
The lactose operon is an operon required for the transport and metabolism of lactose in E. coli and many other enteric bacteria. Although glucose is the preferred carbon source for most bacteria, the lac operon allows for the effective digestion of lactose when glucose is not available through the activity of beta-galactosidase. Gene regulation of the lac operon was the first genetic regulatory mechanism to be understood clearly, so it has become a foremost example of prokaryotic gene regulation. It is often discussed in introductory molecular and cellular biology classes for this reason. This lactose metabolism system was used by François Jacob and Jacques Monod to determine how a biological cell knows which enzyme to synthesize. Their work on the lac operon won them the Nobel Prize in Physiology in 1965.
A bioreactor refers to any manufactured device or system that supports a biologically active environment. In one case, a bioreactor is a vessel in which a chemical process is carried out which involves organisms or biochemically active substances derived from such organisms. This process can either be aerobic or anaerobic. These bioreactors are commonly cylindrical, ranging in size from litres to cubic metres, and are often made of stainless steel. It may also refer to a device or system designed to grow cells or tissues in the context of cell culture. These devices are being developed for use in tissue engineering or biochemical/bioprocess engineering.
Metabolic engineering is the practice of optimizing genetic and regulatory processes within cells to increase the cell's production of a certain substance. These processes are chemical networks that use a series of biochemical reactions and enzymes that allow cells to convert raw materials into molecules necessary for the cell's survival. Metabolic engineering specifically seeks to mathematically model these networks, calculate a yield of useful products, and pin point parts of the network that constrain the production of these products. Genetic engineering techniques can then be used to modify the network in order to relieve these constraints. Once again this modified network can be modeled to calculate the new product yield.
Industrial fermentation is the intentional use of fermentation in manufacturing products useful to humans. In addition to the mass production of fermented foods and drinks, industrial fermentation has widespread applications in chemical industry. Commodity chemicals, such as acetic acid, citric acid, and ethanol are made by fermentation. Moreover, nearly all commercially produced industrial enzymes, such as lipase, invertase and rennet, are made by fermentation with genetically modified microbes. In some cases, production of biomass itself is the objective, as is the case for single-cell proteins, baker's yeast, and starter cultures for lactic acid bacteria used in cheesemaking.
A chemostat is a bioreactor to which fresh medium is continuously added, while culture liquid containing left over nutrients, metabolic end products and microorganisms is continuously removed at the same rate to keep the culture volume constant. By changing the rate with which medium is added to the bioreactor the specific growth rate of the microorganism can be easily controlled within limits.
In biochemistry, mixed acid fermentation is the metabolic process by which a six-carbon sugar is converted into a complex and variable mixture of acids. It is an anaerobic (non-oxygen-requiring) fermentation reaction that is common in bacteria. It is characteristic for members of the Enterobacteriaceae, a large family of Gram-negative bacteria that includes E. coli.
The galactose permease or GalP found in Escherichia coli is an integral membrane protein involved in the transport of monosaccharides, primarily hexoses, for utilization by E. coli in glycolysis and other metabolic and catabolic pathways (3,4). It is a member of the Major Facilitator Super Family (MFS) and is homologue of the human GLUT1 transporter (4). Below you will find descriptions of the structure, specificity, effects on homeostasis, expression, and regulation of GalP along with examples of several of its homologues.
Fermentation is a metabolic process that produces chemical changes in organic substrates through the action of enzymes. In biochemistry, it is narrowly defined as the extraction of energy from carbohydrates in the absence of oxygen. In food production, it may more broadly refer to any process in which the activity of microorganisms brings about a desirable change to a foodstuff or beverage. The science of fermentation is known as zymology.
Amino acid synthesis is the set of biochemical processes by which the amino acids are produced. The substrates for these processes are various compounds in the organism's diet or growth media. Not all organisms are able to synthesize all amino acids. For example, humans can synthesize 11 of the 20 standard amino acids. These 11 are called the non-essential amino acids).
The Crabtree effect, named after the English biochemist Herbert Grace Crabtree, describes the phenomenon whereby the yeast, Saccharomyces cerevisiae, produces ethanol (alcohol) in aerobic conditions at high external glucose concentrations rather than producing biomass via the tricarboxylic acid (TCA) cycle, the usual process occurring aerobically in most yeasts e.g. Kluyveromyces spp. This phenomenon is observed in most species of the Saccharomyces, Schizosaccharomyces, Debaryomyces, Brettanomyces, Torulopsis, Nematospora, and Nadsonia genera. Increasing concentrations of glucose accelerates glycolysis which results in the production of appreciable amounts of ATP through substrate-level phosphorylation. This reduces the need of oxidative phosphorylation done by the TCA cycle via the electron transport chain and therefore decreases oxygen consumption. The phenomenon is believed to have evolved as a competition mechanism around the time when the first fruits on Earth fell from the trees. The Crabtree effect works by repressing respiration by the fermentation pathway, dependent on the substrate.
Metabolic flux analysis (MFA) is an experimental fluxomics technique used to examine production and consumption rates of metabolites in a biological system. At an intracellular level, it allows for the quantification of metabolic fluxes, thereby elucidating the central metabolism of the cell. Various methods of MFA, including isotopically stationary metabolic flux analysis, isotopically non-stationary metabolic flux analysis, and thermodynamics-based metabolic flux analysis, can be coupled with stoichiometric models of metabolism and mass spectrometry methods with isotopic mass resolution to elucidate the transfer of moieties containing isotopic tracers from one metabolite into another and derive information about the metabolic network. Metabolic flux analysis (MFA) has many applications such as determining the limits on the ability of a biological system to produce a biochemical such as ethanol, predicting the response to gene knockout, and guiding the identification of bottleneck enzymes in metabolic networks for metabolic engineering efforts.
Spot 42 (spf) RNA is a regulatory non-coding bacterial small RNA encoded by the spf gene. Spf is found in gammaproteobacteria and the majority of experimental work on Spot42 has been performed in Escherichia coli and recently in Aliivibrio salmonicida. In the cell Spot42 plays essential roles as a regulator in carbohydrate metabolism and uptake, and its expression is activated by glucose, and inhibited by the cAMP-CRP complex.
Super Optimal Broth is a nutrient-rich bacterial growth medium used for microbiological culture, generally of Escherichia coli. This nutrient-rich microbial broth contains peptides, amino acids, water soluble vitamins and glucose in a low-salt formulations. It was developed by Douglas Hanahan in 1983 and is an adjusted version of the commonly used LB medium. Growth of E. coli in SOB or SOC medium results in higher transformation efficiencies of plasmids. SOC medium can also be used to regenerate Klebsiella oxytoca strains for the improved transformation efficiency.
Carbon catabolite repression, or simply catabolite repression, is an important part of global control system of various bacteria and other microorganisms. Catabolite repression allows microorganisms to adapt quickly to a preferred carbon and energy source first. This is usually achieved through inhibition of synthesis of enzymes involved in catabolism of carbon sources other than the preferred one. The catabolite repression was first shown to be initiated by glucose and therefore sometimes referred to as the glucose effect. However, the term "glucose effect" is actually a misnomer since other carbon sources are known to induce catabolite repression.
Diauxic growth, diauxie or diphasic growth is any cell growth characterized by cellular growth in two phases. Diauxic growth, meaning double growth, is caused by the presence of two sugars on a culture growth media, one of which is easier for the target bacterium to metabolize. The preferred sugar is consumed first, which leads to rapid growth, followed by a lag phase. During the lag phase the cellular machinery used to metabolize the second sugar is activated and subsequently the second sugar is metabolized.
Microbial production of Succinic acid can be performed with wild bacteria like Actinobacillus succinogenes, Mannheimia succiniciproducens and Anaerobiospirillum succiniciproducens or genetically modified Escherichia coli, Corynebacterium glutamicum and Saccharomyces cerevisiae. Understanding of the central carbon metabolism of these organisms is crucial in determining the maximum obtainable yield of succinic acid on the carbon source employed as substrate.
Changestat is a continuous cultivation method that is used for acquiring quantitative data of a microorganism's metabolism at various environmental conditions within a single experiment. Every changestat always starts as a continuous cultivation experiment, but after reaching steady state, smooth and slow change of an environmental parameter is applied. Two most common changestat techniques are accelerostat (A-stat) and dilution rate stat (D-stat).
Overflow metabolism refers to the seemingly wasteful strategy in which cells incompletely oxidize their growth substrate instead of using the respiratory pathway, even in the presence of oxygen. As a result of employing this metabolic strategy, cells excrete metabolites like lactate, acetate and ethanol. Incomplete oxidation of growth substrates yields less energy than complete oxidation through respiration, and yet overflow metabolism—known as the Warburg effect in the context of cancer and the Crabtree effect in the context of yeast—occurs ubiquitously among fast-growing cells, including bacteria, fungi and mammalian cells.
Microbial cell factory is an approach to bioengineering which considers microbial cells as a production facility in which the optimization process largely depends on metabolic engineering. MCFs is a derivation of cell factories, which are engineered microbes and plant cells. In 1980s and 1990s, MCFs were originally conceived to improve productivity of cellular systems and metabolite yields through strain engineering. A MCF develops native and nonnative metabolites through targeted strain design. In addition, MCFs can shorten the synthesis cycle while reducing the difficulty of product separation.
Substrate inhibition in bioreactors occurs when the concentration of substrate exceeds the optimal parameters and reduces the growth rate of the cells within the bioreactor. This is often confused with substrate limitation, which describes environments in which cell growth is limited due to of low substrate. Limited conditions can be modeled with the Monod equation; however, the Monod equation is no longer suitable in substrate inhibiting conditions. A Monod deviation, such as the Haldane (Andrew) equation, is more suitable for substrate inhibiting conditions. These cell growth models are analogous to equations that describe enzyme kinetics, although, unlike enzyme kinetics parameters, cell growth parameters are generally empirically estimated.