Adaptable robotics

Last updated

Adaptable Robotics refers to a field of robotics with a focus on creating robotic systems capable of adjusting their hardware and software components to perform a wide range of tasks while adapting to varying environments. The 1960s introduced robotics into the industrial field. [1] Since then, the need to make robots with new forms of actuation, adaptability, sensing and perception, and even the ability to learn stemmed the field of adaptable robotics. Significant developments such as the PUMA robot, manipulation research, soft robotics, swarm robotics, AI, cobots, bio-inspired approaches, and more ongoing research have advanced the adaptable robotics field tremendously. Adaptable robots are usually associated with their development kit, typically used to create autonomous mobile robots. In some cases, an adaptable kit will still be functional even when certain components break. [2]

Contents

Adaptable robotics systems successfully adapt to their environment using techniques such as modular design, machine learning, and sensor feedback. Using this, they have revolutionized various industries and can address many real-world challenges in the medical, industrial, extraterrestrial, and experimental fields. There are still many challenges to overcome in adaptable robotics, which presents opportunities for growth in the field.

Fundamental concepts

An adaptable robot typically has attributes that distinguish it from robots that perform their task regardless of external factors. Four concepts that adaptable robots utilize to make this distinction are adaptability, sensing and perception, learning and intelligence, and actuation.

Adaptability

A robot can be defined as adaptive when it has capabilities such as intrinsic safety and performance without compromise, the ability to learn, and the capacity to perform tasks traditional robots are not capable of. These capabilities can be achieved through force control technology, hierarchical intelligence, and other innovative approaches. [3] John Adler’s invention in 1994, the cyberknife, is a robotic surgery system that is capable of using ultra-fine precision in medical procedures which demonstrates such adaptations. [4]

Sensing and Perception

Environmental information gathered through peripherals is processed intelligently in adaptable systems. AI systems can process this data and adjust task primitives accordingly, leading to adapted action. [3] In 2001, the Canadarm 2 was launched to the ISS and played a key role in the maintenance of the station, using data from peripherals to adapt the ISS to environmental changes within it. [4]

Learning and Intelligence

AI, Machine Learning, and Deep Learning allow systems to learn about the world around them and become progressively more intelligent when executing their tasks. [3] [12] In 1997 the robot Sojourner was launched to Mars, with an onboard computer allowing it to adapt to unplanned events and obstacles even with minimal data; a precursor to the addition of AI in adaptable systems. Later that year, IBM’s Deep Blue computer defeated Garry Kasparov in a game of chess, a landmark for robotic AI’s ability to plan and react. [4]

Actuation

Actuation in robotic systems allows the robot to move. Adaptable actuators typically function in response to environmental changes, such as changes in temperature which may change the shape of the actuator. Thus, altering functionality. [5] Self-powering (untethered) actuation is achievable, especially in soft robotics where external stimuli can change the shape of an actuator, creating mechanical energy. [6] In 1989 Rodney Brooks created Ghengis, a hexapedal robot capable of traversing difficult terrain. [4] The Hexapedal model uses six actuators for mobility and has remained prominent with modern hexapedal models like the Rhex.

Software

The kits come with an open software platform tailored to a range of common robotic functions. The kits also come with common robotics hardware that connects easily with the software (infrared sensors, motors, microphone and video camera), which add to the capabilities of the robot. [7]

The process of modifying a robot to achieve varying capabilities such as collaboration could merely include the selection of a module, the exchange of modules, robotic instruction via software, and execution. [8]

Types

Soft Robots

Robotics with soft grippers is an emerging field in the adaptable robotic scene which is based on the Venus flytrap. Two soft robotic surfaces provide enveloping and pinching grasp modules. This technology is tested in a variety of environments to determine the effects of diverse objects, errors of object position, and soft robotic surface installation on grasping capacity. [9] Untethered actuation is achievable, especially in soft robots with liquid crystal polymers, a category of stimuli-responsive materials with two way shape memory effect. This can allow the liquid crystal polymers to generate mechanical energy by changing shape in response to external stimuli, hence untethered actuation. [10]

Modular Robots

Robots designed for the outdoors that adapt to changing landscapes and obstacles. These are constructed like a chain of individual modules with simple hinge joints, enabling modular robots to morph themselves into various shapes to traverse terrain. Some of these forms include configurations like spider, serpentine, and loop. [11]

Swarm Robotics

Field of robotics utilizing swarm intelligence to groups of simple homogeneous robots. Swarm robots follow algorithms, usually designed to mimic the behavior of real animals, in order to determine their movements in response to environmental stimuli. [12]

Biohybrid Robots

Biohybrid robotics use living tissues or cells to provide machines with functions that would be difficult to achieve otherwise. For instance, muscle cells have been utilized to allow certain biohybrid robots to move. Swarm robotics combine with biohybrid in certain cases, especially within the medical field [12] [13] Insect-machine hybrid robots, also known as cyborg insects or insect biobots, is the fusion of a living insect and artificial control system integrated with its body to drive its locomotion or behaviours [14] [15] [16] [17] [18] .

Applications

Adaptable robotics possess capabilities that have made them applicable to many fields including, but not limited to, the medical, industrial, and experimental fields.

Learning from demonstration is a strategy for transferring human motion skills to robots. The primary goal is to identify significant movement primitives, significant movements humans make, from demonstration and remake these motions to adapt the robot to that motion. There have been a few issues with robots being unable to adapt skills learned by learning from demonstration to new environments (a change from the scenario in which the robot was given initial demonstrations). These issues with learning from demonstration have been addressed with a learning model based on a nonlinear dynamic system which encodes trajectories as dynamic motion primitive, which are similar to movement primitives, but they are significant movements represented by a mathematical equation; equation variables change with the changing environment, altering the motion performed. The trajectories recorded through these systems have proven to apply to a wide variety of environments making the robots more effective in their respective spheres. Learning from demonstration has progressed the applicability of robotics in fields where precision is essential, such as surgical environments. [19]

In the medical field, SAR technology focuses on taking sensory data from wearable peripherals to perceive the user’s state of being. The information gathered enables the machine to provide personalized monitoring, motivation, and coaching for rehabilitation. Intuitive Physical HRI and interfaces between humans and robots allow functionalities like recording the motions of a surgeon to infer their intent, determining the mechanical parameters of human tissue, and other sensory data to use in medical scenarios. [20] Biohybrid robotics have medical applications utilizing biodegradable components to allow robots to function safely within the human body. [13]

AI, machine learning, and deep learning have allowed advances in adaptable robotics such as autonomous navigation, object recognition and manipulation, natural language processing, and predictive maintenance. These technologies have been essential in the development of cobots (collaborative robots), which are robots capable of working alongside humans capable of adapting to changing environments. [21]

In the industrial field, AI, Machine Learning, and Deep Learning can be used to perform quality control checks on manufactured products, identify defects in products, and alert production teams to make necessary changes in real-time. [21]

Challenges and limitations

Systems that involve physical collaboration between humans and robots are difficult to design well due to human uncertainty. Humans alter the force of their motions regularly due to human factors like emotion, biological processes, and other extraneous factors unknown to a robot. This can make sensory data difficult to quantify for successful adaptation in robots. Furthermore, the specific needs, characteristics, and preferences that a patient in a medical scenario may need vary from person to person. Adaptable robotic systems need extended time to adapt to the new environment introduced from patient to patient. [19] [20]

The need for reliable data from sensory technology is a challenge for adaptable systems, especially in the AI realm. With AI models becoming rapidly more advanced, the need to develop peripheral technologies able to provide necessary information for these systems becomes increasingly more challenging. Furthermore, the need for dynamic environments to train AI algorithms proves to be challenging as not every scenario a machine may find itself in will be introduced to it during training. [21]

Swarm robots are limited by interference and collisions, uncertainty, lack of specialization, and lack of understanding of the behavioral pattern of the swarm. [12] Biohybrid robotics have challenges with living cells being delicate even though they are adaptable to a variety of environments due to the properties of the biological material. [13]

See also

Related Research Articles

<span class="mw-page-title-main">Microbotics</span> Branch of robotics

Microbotics is the field of miniature robotics, in particular mobile robots with characteristic dimensions less than 1 mm. The term can also be used for robots capable of handling micrometer size components.

<span class="mw-page-title-main">Dario Floreano</span> Swiss-Italian roboticist and engineer

Dario Floreano is a Swiss-Italian roboticist and engineer. He is Director of the Laboratory of Intelligent System (LIS) at the École Polytechnique Fédérale de Lausanne in Switzerland and was the founding director of the Swiss National Centre of Competence in Research (NCCR) Robotics.

Domo is an experimental robot made by the Massachusetts Institute of Technology designed to interact with humans. The brainchild of Jeff Weber and Aaron Edsinger, cofounders of Meka Robotics, its name comes from the Japanese phrase for "thank you very much", domo arigato, as well as the Styx song, "Mr. Roboto". The Domo project was originally funded by NASA, and has now been joined by Toyota in funding robot's development.

Developmental robotics (DevRob), sometimes called epigenetic robotics, is a scientific field which aims at studying the developmental mechanisms, architectures and constraints that allow lifelong and open-ended learning of new skills and new knowledge in embodied machines. As in human children, learning is expected to be cumulative and of progressively increasing complexity, and to result from self-exploration of the world in combination with social interaction. The typical methodological approach consists in starting from theories of human and animal development elaborated in fields such as developmental psychology, neuroscience, developmental and evolutionary biology, and linguistics, then to formalize and implement them in robots, sometimes exploring extensions or variants of them. The experimentation of those models in robots allows researchers to confront them with reality, and as a consequence, developmental robotics also provides feedback and novel hypotheses on theories of human and animal development.

The expression computational intelligence (CI) usually refers to the ability of a computer to learn a specific task from data or experimental observation. Even though it is commonly considered a synonym of soft computing, there is still no commonly accepted definition of computational intelligence.

<span class="mw-page-title-main">Mobile robot</span> Type of robot

A mobile robot is an automatic machine that is capable of locomotion. Mobile robotics is usually considered to be a subfield of robotics and information engineering.

<span class="mw-page-title-main">Metin Sitti</span> Professor in the field of robotics

Metin Sitti is the Director of the Physical Intelligence Department at the Max Planck Institute for Intelligent Systems in Stuttgart, which he founded in 2014. He is also a Professor in the Department of Information Technology and Electrical Engineering at ETH Zurich, a Professor at the School of Medicine and College of Engineering at Koç University and co-founder of Setex Technologies Inc. based in Pittsburgh, USA.

Modular self-reconfiguring robotic systems or self-reconfigurable modular robots are autonomous kinematic machines with variable morphology. Beyond conventional actuation, sensing and control typically found in fixed-morphology robots, self-reconfiguring robots are also able to deliberately change their own shape by rearranging the connectivity of their parts, in order to adapt to new circumstances, perform new tasks, or recover from damage.

<span class="mw-page-title-main">Daniela Rus</span> American computer scientist

Daniela L. Rus is a Romanian-American computer scientist. She serves as director of the MIT Computer Science and Artificial Intelligence Laboratory (CSAIL), and the Andrew and Erna Viterbi Professor in the Department of Electrical Engineering and Computer Science (EECS) at the Massachusetts Institute of Technology. She is the author of the books Computing the Future, The Heart and the Chip: Our Bright Future with Robots, and The Mind's Mirror: Risk and Reward in the Age of AI.

<span class="mw-page-title-main">Robotics</span> Design, construction, use, and application of robots

Robotics is the interdisciplinary study and practice of the design, construction, operation, and use of robots.

The following outline is provided as an overview of and topical guide to robotics:

Robotic sensing is a subarea of robotics science intended to provide sensing capabilities to robots. Robotic sensing provides robots with the ability to sense their environments and is typically used as feedback to enable robots to adjust their behavior based on sensed input. Robot sensing includes the ability to see, touch, hear and move and associated algorithms to process and make use of environmental feedback and sensory data. Robot sensing is important in applications such as vehicular automation, robotic prosthetics, and for industrial, medical, entertainment and educational robots.

<span class="mw-page-title-main">Bio-inspired robotics</span>

Bio-inspired robotic locomotion is a subcategory of bio-inspired design. It is about learning concepts from nature and applying them to the design of real-world engineered systems. More specifically, this field is about making robots that are inspired by biological systems, including Biomimicry. Biomimicry is copying from nature while bio-inspired design is learning from nature and making a mechanism that is simpler and more effective than the system observed in nature. Biomimicry has led to the development of a different branch of robotics called soft robotics. The biological systems have been optimized for specific tasks according to their habitat. However, they are multifunctional and are not designed for only one specific functionality. Bio-inspired robotics is about studying biological systems, and looking for the mechanisms that may solve a problem in the engineering field. The designer should then try to simplify and enhance that mechanism for the specific task of interest. Bio-inspired roboticists are usually interested in biosensors, bioactuators, or biomaterials. Most of the robots have some type of locomotion system. Thus, in this article different modes of animal locomotion and few examples of the corresponding bio-inspired robots are introduced.

<span class="mw-page-title-main">Soft robotics</span> Subfield of robotics

Soft robotics is a subfield of robotics that concerns the design, control, and fabrication of robots composed of compliant materials, instead of rigid links. In contrast to rigid-bodied robots built from metals, ceramics and hard plastics, the compliance of soft robots can improve their safety when working in close contact with humans.

The term “soft robots” designs a broad class of robotic systems whose architecture includes soft elements, with much higher elasticity than traditional rigid robots. Articulated Soft Robots are robots with both soft and rigid parts, inspired to the muscloloskeletal system of vertebrate animals – from reptiles to birds to mammalians to humans. Compliance is typically concentrated in actuators, transmission and joints while structural stability is provided by rigid or semi-rigid links.

A continuum robot is a type of robot that is characterised by infinite degrees of freedom and number of joints. These characteristics allow continuum manipulators to adjust and modify their shape at any point along their length, granting them the possibility to work in confined spaces and complex environments where standard rigid-link robots cannot operate. In particular, we can define a continuum robot as an actuatable structure whose constitutive material forms curves with continuous tangent vectors. This is a fundamental definition that allows to distinguish between continuum robots and snake-arm robots or hyper-redundant manipulators: the presence of rigid links and joints allows them to only approximately perform curves with continuous tangent vectors.

<span class="mw-page-title-main">Biohybrid microswimmer</span>

A biohybrid microswimmer also known as biohybrid nanorobot, can be defined as a microswimmer that consist of both biological and artificial constituents, for instance, one or several living microorganisms attached to one or various synthetic parts.

<span class="mw-page-title-main">Microswimmer</span> Microscopic object able to traverse fluid

A microswimmer is a microscopic object with the ability to move in a fluid environment. Natural microswimmers are found everywhere in the natural world as biological microorganisms, such as bacteria, archaea, protists, sperm and microanimals. Since the turn of the millennium there has been increasing interest in manufacturing synthetic and biohybrid microswimmers. Although only two decades have passed since their emergence, they have already shown promise for various biomedical and environmental applications.

<span class="mw-page-title-main">Necrobotics</span> Practice of using biotic materials as robotic components

Necrobotics is the practice of using biotic materials as robotic components. In July 2022, researchers in the Preston Innovation Lab at Rice University in Houston, Texas published a paper in Advanced Science introducing the concept and demonstrating its capability by repurposing dead spiders as robotic grippers and applying pressurized air to activate their gripping arms.

<span class="mw-page-title-main">Peristaltic robot</span> Peristaltic robot based on earthworm

A peristaltic robot, also known as a worm-bot, is a robot that uses peristaltic locomotion to move, mimicking the movement of earthworms. Peristaltic locomotion relies on compressions and expansions of the metameres, or body segments, of earthworms. This method of movement is especially effective in navigating through narrow and intricate surfaces, making it particularly suitable for small millimeter-scale robots. Peristaltic robots have a wide range of applications, including endoscopy, mining operations, and pipe inspections.

References

  1. P. Thomson, “An Exhaustive History of Robotics,” G2, Aug. 30, 2019. https://www.g2.com/articles/history-of-robots (accessed Oct. 30, 2023).
  2. "Adaptable robots 'on their way' to the home". BBC News. 2015-05-27. Retrieved 2023-11-09.
  3. 1 2 3 Content, Sponsored (2019-07-29). "Why Adaptive Robots are the Next Big Thing". Robotics Business Review. Retrieved 2023-11-09.
  4. 1 2 3 4 P. Thomson, “An Exhaustive History of Robotics,” G2, Aug. 30, 2019. https://www.g2.com/articles/history-of-robots (accessed Oct. 30, 2023).
  5. "Actuators: what is it, definition, types and how does it work". Progressive Automations. Retrieved 2023-11-09.
  6. Chi, Yinding; Zhao, Yao; Hong, Yaoye; Li, Yanbin; Yin, Jie (February 2024). "A Perspective on Miniature Soft Robotics: Actuation, Fabrication, Control, and Applications". Advanced Intelligent Systems. 6 (2). doi: 10.1002/aisy.202300063 .
  7. "Benefits of programmable robot kits for beginners". Twit IQ. 2022-06-22. Retrieved 2023-06-26.
  8. Tokhi, Mohammad; Gurvinder, Virk (2016). Advances In Cooperative Robotics - Proceedings Of The 19th International Conference On Clawar 2016. Hackensack, NJ: World Scientific. p. 159. ISBN   9789813149120.
  9. Xiao, Wei; Liu, Chang; Hu, Dean; Yang, Gang; Han, Xu (April 2022). "Soft robotic surface enhances the grasping adaptability and reliability of pneumatic grippers". International Journal of Mechanical Sciences. 219: 107094. doi:10.1016/j.ijmecsci.2022.107094.
  10. Chi, Yinding; Zhao, Yao; Hong, Yaoye; Li, Yanbin; Yin, Jie (February 2024). "A Perspective on Miniature Soft Robotics: Actuation, Fabrication, Control, and Applications". Advanced Intelligent Systems. 6 (2). doi: 10.1002/aisy.202300063 .
  11. Yim, Mark; Zhang, Ying; Duff, David (1 February 2002). "Modular Robots". IEEE Spectrum.
  12. 1 2 3 Iglesias, Andrés; Gálvez, Akemi; Suárez, Patricia (2020). "Swarm robotics – a case study: Bat robotics". Nature-Inspired Computation and Swarm Intelligence. pp. 273–302. doi:10.1016/B978-0-12-819714-1.00026-9. ISBN   978-0-12-819714-1.
  13. 1 2 3 Conocimiento, Ventana al (2019-10-21). "Biohybrid robots, the next step in the robotic revolution". OpenMind. Retrieved 2023-11-09.
  14. Sato, Hirotaka; Vo Doan, Tat Thang; Kolev, Svetoslav; Huynh, Ngoc Anh; Zhang, Chao; Massey, Travis L.; van Kleef, Joshua; Ikeda, Kazuo; Abbeel, Pieter; Maharbiz, Michel M. (March 2015). "Deciphering the Role of a Coleopteran Steering Muscle via Free Flight Stimulation". Current Biology. 25 (6): 798–803. doi:10.1016/j.cub.2015.01.051. ISSN   0960-9822. PMID   25784033.
  15. Vo Doan, Tat Thang; Tan, Melvin Y.W.; Bui, Xuan Hien; Sato, Hirotaka (February 2018). "An Ultralightweight and Living Legged Robot". Soft Robotics. 5 (1): 17–23. doi:10.1089/soro.2017.0038. ISSN   2169-5172. PMID   29412086.
  16. Cao, Feng; Sato, Hirotaka (August 2019). "Insect–Computer Hybrid Robot Achieves a Walking Gait Rarely Seen in Nature by Replacing the Anisotropic Natural Leg Spines With Isotropic Artificial Leg Spines". IEEE Transactions on Robotics. 35 (4): 1034–1038. doi:10.1109/TRO.2019.2903416. ISSN   1552-3098.
  17. Latif, T.; Bozkurt, A. (August 2012). "Line following terrestrial insect biobots". 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE. pp. 972–975. doi:10.1109/EMBC.2012.6346095. ISBN   978-1-4577-1787-1. PMID   23366056.
  18. Ma, Songsong; Chen, Yuansheng; Yang, Songlin; Liu, Shen; Tang, Lingqi; Li, Bing; Li, Yao (January 2023). "The Autonomous Pipeline Navigation of a Cockroach Bio-Robot with Enhanced Walking Stimuli". Cyborg and Bionic Systems. 4: 0067. doi:10.34133/cbsystems.0067. ISSN   2692-7632. PMC   10631459 . PMID   38026542.
  19. 1 2 Teng, Tao; Gatti, Matteo; Poni, Stefano; Caldwell, Darwin; Chen, Fei (June 2023). "Fuzzy dynamical system for robot learning motion skills from human demonstration". Robotics and Autonomous Systems. 164: 104406. doi:10.1016/j.robot.2023.104406.
  20. 1 2 Okamura, Allison; Mataric, Maja; Christensen, Henrik (September 2010). "Medical and Health-Care Robotics". IEEE Robotics & Automation Magazine. 17 (3): 26–37. doi:10.1109/MRA.2010.937861. hdl: 1853/37375 .
  21. 1 2 3 Soori, Mohsen; Arezoo, Behrooz; Dastres, Roza (2023). "Artificial intelligence, machine learning and deep learning in advanced robotics, a review". Cognitive Robotics. 3: 54–70. doi: 10.1016/j.cogr.2023.04.001 .