Origin of water on Earth

Last updated
Water covers about 71% of Earth's surface. BlueMarble-2001-2002.jpg
Water covers about 71% of Earth's surface.

The origin of water on Earth is the subject of a body of research in the fields of planetary science, astronomy, and astrobiology. Earth is unique among the rocky planets in the Solar System in having oceans of liquid water on its surface. [2] Liquid water, which is necessary for all known forms of life, continues to exist on the surface of Earth because the planet is at a far enough distance (known as the habitable zone) from the Sun that it does not lose its water, but not so far that low temperatures cause all water on the planet to freeze.

Contents

It was long thought that Earth's water did not originate from the planet's region of the protoplanetary disk. Instead, it was hypothesized water and other volatiles must have been delivered to Earth from the outer Solar System later in its history. Recent research, however, indicates that hydrogen inside the Earth played a role in the formation of the ocean. [3] The two ideas are not mutually exclusive, as there is also evidence that water was delivered to Earth by impacts from icy planetesimals similar in composition to asteroids in the outer edges of the asteroid belt. [4]

History of water on Earth

One factor in estimating when water appeared on Earth is that water is continually being lost to space. H2O molecules in the atmosphere are broken up by photolysis, and the resulting free hydrogen atoms can sometimes escape Earth's gravitational pull. When the Earth was younger and less massive, water would have been lost to space more easily. Lighter elements like hydrogen and helium are expected to leak from the atmosphere continually, but isotopic ratios of heavier noble gases in the modern atmosphere suggest that even the heavier elements in the early atmosphere were subject to significant losses. [4] In particular, xenon is useful for calculations of water loss over time. Not only is it a noble gas (and therefore is not removed from the atmosphere through chemical reactions with other elements), but comparisons between the abundances of its nine stable isotopes in the modern atmosphere reveal that the Earth lost at least one ocean of water early in its history, between the Hadean and Archean eons. [5] [ clarification needed ]

Any water on Earth during the latter part of its accretion would have been disrupted by the Moon-forming impact (~4.5 billion years ago), which likely vaporized much of Earth's crust and upper mantle and created a rock-vapor atmosphere around the young planet. [6] [7] The rock vapor would have condensed within two thousand years, leaving behind hot volatiles which probably resulted in a majority carbon dioxide atmosphere with hydrogen and water vapor. Afterward, liquid water oceans may have existed despite the surface temperature of 230 °C (446 °F) due to the increased atmospheric pressure of the CO2 atmosphere. As the cooling continued, most CO2 was removed from the atmosphere by subduction and dissolution in ocean water, but levels oscillated wildly as new surface and mantle cycles appeared. [8]

This pillow basalt on the seafloor near Hawaii was formed when magma extruded underwater. Other, much older pillow basalt formations provide evidence for large bodies of water long ago in Earth's history. Pillow basalt crop l.jpg
This pillow basalt on the seafloor near Hawaii was formed when magma extruded underwater. Other, much older pillow basalt formations provide evidence for large bodies of water long ago in Earth's history.

Geological evidence also helps constrain the time frame for liquid water existing on Earth. A sample of pillow basalt (a type of rock formed during an underwater eruption) was recovered from the Isua Greenstone Belt and provides evidence that water existed on Earth 3.8 billion years ago. [9] In the Nuvvuagittuq Greenstone Belt, Quebec, Canada, rocks dated at 3.8 billion years old by one study [10] and 4.28 billion years old by another [11] show evidence of the presence of water at these ages. [9] If oceans existed earlier than this, any geological evidence has yet to be discovered (which may be because such potential evidence has been destroyed by geological processes like crustal recycling). More recently, in August 2020, researchers reported that sufficient water to fill the oceans may have always been on the Earth since the beginning of the planet's formation. [12] [13] [14]

Unlike rocks, minerals called zircons are highly resistant to weathering and geological processes and so are used to understand conditions on the very early Earth. Mineralogical evidence from zircons has shown that liquid water and an atmosphere must have existed 4.404 ± 0.008 billion years ago, very soon after the formation of Earth. [15] [16] [17] [18] This presents somewhat of a paradox, as the cool early Earth hypothesis suggests temperatures were cold enough to freeze water between about 4.4 billion and 4.0 billion years ago. Other studies of zircons found in Australian Hadean rock point to the existence of plate tectonics as early as 4 billion years ago. If true, that implies that rather than a hot, molten surface and an atmosphere full of carbon dioxide, early Earth's surface was much as it is today (in terms of thermal insulation). The action of plate tectonics traps vast amounts of CO2, thereby reducing greenhouse effects, leading to a much cooler surface temperature and the formation of solid rock and liquid water. [19]

Earth's water inventory

While the majority of Earth's surface is covered by oceans, those oceans make up just a small fraction of the mass of the planet. The mass of Earth's oceans is estimated to be 1.37 × 1021 kg, which is 0.023% of the total mass of Earth, 6.0 × 1024 kg. An additional 5.0 × 1020 kg of water is estimated to exist in ice, lakes, rivers, groundwater, and atmospheric water vapor. [20] A significant amount of water is also stored in Earth's crust, mantle, and core. Unlike molecular H2O that is found on the surface, water in the interior exists primarily in hydrated minerals or as trace amounts of hydrogen bonded to oxygen atoms in anhydrous minerals. [21] Hydrated silicates on the surface transport water into the mantle at convergent plate boundaries, where oceanic crust is subducted underneath continental crust. While it is difficult to estimate the total water content of the mantle due to limited samples, approximately three times the mass of the Earth's oceans could be stored there. [21] Similarly, the Earth's core could contain four to five oceans' worth of hydrogen. [20] [22]

Hypotheses for the origins of Earth's water

Extraplanetary sources

Water has a much lower condensation temperature than other materials that compose the terrestrial planets in the Solar System, such as iron and silicates. The region of the protoplanetary disk closest to the Sun was very hot early in the history of the Solar System, and it is not feasible that oceans of water condensed with the Earth as it formed. Further from the young Sun where temperatures were lower, water could condense and form icy planetesimals. The boundary of the region where ice could form in the early Solar System is known as the frost line (or snow line), and is located in the modern asteroid belt, between about 2.7 and 3.1 astronomical units (AU) from the Sun. [23] [24] It is therefore necessary that objects forming beyond the frost line–such as comets, trans-Neptunian objects, and water-rich meteoroids (protoplanets)–delivered water to Earth. However, the timing of this delivery is still in question.

One hypothesis claims that Earth accreted (gradually grew by accumulation of) icy planetesimals about 4.5 billion years ago, when it was 60 to 90% of its current size. [21] In this scenario, Earth was able to retain water in some form throughout accretion and major impact events. This hypothesis is supported by similarities in the abundance and the isotope ratios of water between the oldest known carbonaceous chondrite meteorites and meteorites from Vesta, both of which originate from the Solar System's asteroid belt. [25] [26] It is also supported by studies of osmium isotope ratios, which suggest that a sizeable quantity of water was contained in the material that Earth accreted early on. [27] [28] Measurements of the chemical composition of lunar samples collected by the Apollo 15 and 17 missions further support this, and indicate that water was already present on Earth before the Moon was formed. [29]

One problem with this hypothesis is that the noble gas isotope ratios of Earth's atmosphere are different from those of its mantle, which suggests they were formed from different sources. [30] [31] To explain this observation, a so-called "late veneer" theory has been proposed in which water was delivered much later in Earth's history, after the Moon-forming impact. However, the current understanding of Earth's formation allows for less than 1% of Earth's material accreting after the Moon formed, implying that the material accreted later must have been very water-rich. Models of early Solar System dynamics have shown that icy asteroids could have been delivered to the inner Solar System (including Earth) during this period if Jupiter migrated closer to the Sun. [32]

Yet a third hypothesis, supported by evidence from molybdenum isotope ratios from a 2019 study, suggests that the Earth gained most of its water from the same interplanetary collision that caused the formation of the Moon. [33]

The evidence from 2019 shows that the molybdenum isotopic composition of the Earth's mantle originates from the outer Solar System, likely having brought water to Earth. The explanation is that Theia, the planet said in the giant-impact hypothesis to have collided with Earth 4.5 billion years ago forming the Moon, may have originated in the outer Solar System rather than in the inner Solar System, bringing water and carbon-based materials with it. [33]

Geochemical analysis of water in the Solar System

Carbonaceous chondrites such as the Allende Meteorite (above) likely delivered much of the Earth's water, as evidenced by their isotopic similarities to ocean water. Carbonaceous chondrite (Allende Meteorite) (4.560-4.568 Ga) 6 (16763228023).jpg
Carbonaceous chondrites such as the Allende Meteorite (above) likely delivered much of the Earth's water, as evidenced by their isotopic similarities to ocean water.

Isotopic ratios provide a unique "chemical fingerprint" that is used to compare Earth's water with reservoirs elsewhere in the Solar System. One such isotopic ratio, that of deuterium to hydrogen (D/H), is particularly useful in the search for the origin of water on Earth. Hydrogen is the most abundant element in the universe, and its heavier isotope deuterium can sometimes take the place of a hydrogen atom in molecules like H2O. Most deuterium was created in the Big Bang or in supernovae, so its uneven distribution throughout the protosolar nebula was effectively "locked in" early in the formation of the Solar System. [34] By studying the different isotopic ratios of Earth and of other icy bodies in the Solar System, the likely origins of Earth's water can be researched.

Earth

The deuterium to hydrogen ratio for ocean water on Earth is known very precisely to be (1.5576 ± 0.0005) × 10−4. [35] This value represents a mixture of all of the sources that contributed to Earth's reservoirs, and is used to identify the source or sources of Earth's water. The ratio of deuterium to hydrogen has increased over the Earth's lifetime between 2 and 9 times the ratio at the Earth's origin, because the lighter isotope is more likely to leak into space in atmospheric loss processes. [36] Hydrogen beneath the Earth's crust is thought to have a D/H ratio more representative of the original D/H ratio upon formation of the Earth, because it is less affected by those processes. Analysis of subsurface hydrogen contained in recently released lava has been estimated to show that there was a 218 higher D/H ratio in the primordial Earth compared to the current ratio. [37] No process is known that can decrease Earth's D/H ratio over time. [38] This loss of the lighter isotope is one explanation for why Venus has such a high D/H ratio, as that planet's water was vaporized during the runaway greenhouse effect and subsequently lost much of its hydrogen to space. [39] Because Earth's D/H ratio has increased significantly over time, the D/H ratio of water originally delivered to the planet was lower than at present. This is consistent with a scenario in which a significant proportion of the water on Earth was already present during the planet's early evolution. [20]

Asteroids

Comet Halley as imaged by the European Space Agency's Giotto probe in 1986. Giotto flew by Halley's Comet and analyzed the isotopic levels of ice sublimating from the comet's surface using a mass spectrometer. Comet Halley close up.jpg
Comet Halley as imaged by the European Space Agency's Giotto probe in 1986. Giotto flew by Halley's Comet and analyzed the isotopic levels of ice sublimating from the comet's surface using a mass spectrometer.

Multiple geochemical studies have concluded that asteroids are most likely the primary source of Earth's water. [40] Carbonaceous chondrites—which are a subclass of the oldest meteorites in the Solar System—have isotopic levels most similar to ocean water. [41] [42] The CI and CM subclasses of carbonaceous chondrites specifically have hydrogen and nitrogen isotope levels that closely match Earth's seawater, which suggests water in these meteorites could be the source of Earth's oceans. [43] Two 4.5 billion-year-old meteorites found on Earth that contained liquid water alongside a wide diversity of deuterium-poor organic compounds further support this. [44] Earth's current deuterium to hydrogen ratio also matches ancient eucrite chondrites, which originate from the asteroid Vesta in the outer asteroid belt. [45] CI, CM, and eucrite chondrites are believed to have the same water content and isotope ratios as ancient icy protoplanets from the outer asteroid belt that later delivered water to Earth. [46]

A further asteroid particle study supported the theory that a large source of earth's water has come from hydrogen atoms carried on particles in the solar wind which combine with oxygen on asteroids and then arrive on earth in space dust. Using atom probe tomography the study found hydroxide and water molecules on the surface of a single grain from particles retrieved from the asteroid 25143 Itokawa by the Japanese space probe Hayabusa. [47] [48]

Comets

Comets are kilometer-sized bodies made of dust and ice that originate from the Kuiper belt (20-50 AU) and the Oort cloud (>5,000 AU), but have highly elliptical orbits which bring them into the inner solar system. Their icy composition and trajectories which bring them into the inner solar system make them a target for remote and in situ measurements of D/H ratios.

It is implausible that Earth's water originated only from comets, since isotope measurements of the deuterium to hydrogen (D/H) ratio in comets Halley, Hyakutake, Hale–Bopp, 2002T7, and Tuttle, yield values approximately twice that of oceanic water. [49] [50] [51] [52] Using this cometary D/H ratio, models predict that less than 10% of Earth's water was supplied from comets. [53]

Other, shorter period comets (<20 years) called Jupiter family comets likely originate from the Kuiper belt, but have had their orbital paths influenced by gravitational interactions with Jupiter or Neptune. [54] 67P/Churyumov–Gerasimenko is one such comet that was the subject of isotopic measurements by the Rosetta spacecraft, which found the comet has a D/H ratio three times that of Earth's seawater. [55] Another Jupiter family comet, 103P/Hartley 2, has a D/H ratio which is consistent with Earth's seawater, but its nitrogen isotope levels do not match Earth's. [52] [56]

See also

Notes

Related Research Articles

<span class="mw-page-title-main">Deuterium</span> Isotope of hydrogen with one neutron

Deuterium (hydrogen-2, symbol 2H or D, also known as heavy hydrogen) is one of two stable isotopes of hydrogen; the other is protium, or hydrogen-1, 1H. The deuterium nucleus (deuteron) contains one proton and one neutron, whereas the far more common 1H has no neutrons. Deuterium has a natural abundance in Earth's oceans of about one atom of deuterium in every 6,420 atoms of hydrogen. Thus, deuterium accounts for about 0.0156% by number (0.0312% by mass) of all hydrogen in the ocean: 4.85×1013 tonnes of deuterium – mainly as HOD (or 1HO2H or 1H2HO) and only rarely as D2O (or 2H2O) (Deuterium Oxide, also known as Heavy Water)– in 1.4×1018 tonnes of water. The abundance of 2H changes slightly from one kind of natural water to another (see Vienna Standard Mean Ocean Water).

The Hadean is the first and oldest of the four known geologic eons of Earth's history, starting with the planet's formation about 4.6 billion years ago, and ended 4.031 billion years ago. The interplanetary collision that created the Moon occurred early in this eon. The Hadean eon was succeeded by the Archean eon, with the Late Heavy Bombardment hypothesized to have occurred at the Hadean-Archean boundary.

<span class="mw-page-title-main">Impact event</span> Collision of two astronomical objects

An impact event is a collision between astronomical objects causing measurable effects. Impact events have been found to regularly occur in planetary systems, though the most frequent involve asteroids, comets or meteoroids and have minimal effect. When large objects impact terrestrial planets such as the Earth, there can be significant physical and biospheric consequences, as the impacting body is usually traveling at several kilometres a second, though atmospheres mitigate many surface impacts through atmospheric entry. Impact craters and structures are dominant landforms on many of the Solar System's solid objects and present the strongest empirical evidence for their frequency and scale.

<span class="mw-page-title-main">Calcium–aluminium-rich inclusion</span> Asteroid with an inclusion with high quantities of calcium and aluminium

A calcium–aluminium-rich inclusion or Ca–Al-rich inclusion (CAI) is a submillimeter- to centimeter-sized light-colored calcium- and aluminium-rich inclusion found in carbonaceous chondrite meteorites. The four CAIs that have been dated using the Pb-Pb chronometer yield a weighted mean age of 4567.30 ± 0.16 Myr. As CAIs are the oldest dated solids, this age is commonly used to define the age of the Solar System.

<span class="mw-page-title-main">Cosmochemistry</span> Study of the chemical composition of matter in the universe

Cosmochemistry or chemical cosmology is the study of the chemical composition of matter in the universe and the processes that led to those compositions. This is done primarily through the study of the chemical composition of meteorites and other physical samples. Given that the asteroid parent bodies of meteorites were some of the first solid material to condense from the early solar nebula, cosmochemists are generally, but not exclusively, concerned with the objects contained within the Solar System.

<span class="mw-page-title-main">Chondrite</span> Class of stony meteorites made of round grains

A chondrite is a stony (non-metallic) meteorite that has not been modified, by either melting or differentiation of the parent body. They are formed when various types of dust and small grains in the early Solar System accreted to form primitive asteroids. Some such bodies that are captured in the planet's gravity well become the most common type of meteorite by arriving on a trajectory toward the planet's surface. Estimates for their contribution to the total meteorite population vary between 85.7% and 86.2%.

<span class="mw-page-title-main">25143 Itokawa</span> Potentially hazardous near-Earth asteroid in the Apollo group

25143 Itokawa (provisional designation 1998 SF36) is a sub-kilometer near-Earth object of the Apollo group and a potentially hazardous asteroid. It was discovered by the LINEAR program in 1998 and later named after Japanese rocket engineer Hideo Itokawa. The peanut-shaped S-type asteroid has a rotation period of 12.1 hours and measures approximately 330 meters (1,100 feet) in diameter. Due to its low density and high porosity, Itokawa is considered to be a rubble pile, consisting of numerous boulders of different sizes rather than of a single solid body.

<span class="mw-page-title-main">Micrometeorite</span> Meteoroid that survives Earths atmosphere

A micrometeorite is a micrometeoroid that has survived entry through the Earth's atmosphere. Usually found on Earth's surface, micrometeorites differ from meteorites in that they are smaller in size, more abundant, and different in composition. The IAU officially defines meteoroids as 30 micrometers to 1 meter; micrometeorites are the small end of the range (~submillimeter). They are a subset of cosmic dust, which also includes the smaller interplanetary dust particles (IDPs).

<span class="mw-page-title-main">Carbonaceous chondrite</span> Class of chondritic meteorites

Carbonaceous chondrites or C chondrites are a class of chondritic meteorites comprising at least 8 known groups and many ungrouped meteorites. They include some of the most primitive known meteorites. The C chondrites represent only a small proportion (4.6%) of meteorite falls.

<span class="mw-page-title-main">Tagish Lake (meteorite)</span> Stony meteorite

The Tagish Lake meteorite fell at 16:43 UTC on 18 January 2000 in the Tagish Lake area in northwestern British Columbia, Canada.

The Paul Pellas-Graham Ryder Award is jointly sponsored by the Meteoritical Society and the Planetary Geology Division of the Geological Society of America. It recognizes the best planetary science paper, published during the previous year in a peer-reviewed scientific journal, and written by an undergraduate or graduate student. The topics covered by the award are listed on the cover of Meteoritics and Planetary Science. It has been given since 2002, and honors the memories of the incomparable meteoriticist Paul Pellas and lunar scientist Graham Ryder.

The presence of water on the terrestrial planets of the Solar System varies with each planetary body, with the exact origins remaining unclear. Additionally, the terrestrial dwarf planet Ceres is known to have water ice on its surface.

<span class="mw-page-title-main">Extraterrestrial materials</span> Natural objects that originated in outer space

Extraterrestrial material refers to natural objects now on Earth that originated in outer space. Such materials include cosmic dust and meteorites, as well as samples brought to Earth by sample return missions from the Moon, asteroids and comets, as well as solar wind particles.

<span class="mw-page-title-main">101955 Bennu</span> Carbonaceous asteroid

101955 Bennu (provisional designation 1999 RQ36) is a carbonaceous asteroid in the Apollo group discovered by the LINEAR Project on 11 September 1999. It is a potentially hazardous object that is listed on the Sentry Risk Table and has the highest cumulative rating on the Palermo Technical Impact Hazard Scale. It has a cumulative 1-in-1,750 chance of impacting Earth between 2178 and 2290 with the greatest risk being on 24 September 2182. It is named after Bennu, the ancient Egyptian mythological bird associated with the Sun, creation, and rebirth.

CI chondrites, also called C1 chondrites or Ivuna-type carbonaceous chondrites, are a group of rare carbonaceous chondrite, a type of stony meteorite. They are named after the Ivuna meteorite, the type specimen. CI chondrites have been recovered in France, Canada, India, and Tanzania. Their overall chemical composition closely resembles the elemental composition of the Sun, more so than any other type of meteorite.

Asteroidal water is water or water precursor deposits such as hydroxide (OH) that exist in asteroids. The "snow line" of the Solar System lies outside of the main asteroid belt, and the majority of water is expected in minor planets. Nevertheless, a significant amount of water is also found inside the snow line, including in near-earth objects (NEOs).

CM chondrites are a group of chondritic meteorites which resemble their type specimen, the Mighei meteorite. The CM is the most commonly recovered group of the 'carbonaceous chondrite' class of meteorites, though all are rarer in collections than ordinary chondrites.

Gas-rich meteorites are meteorites with high levels of primordial gases, such as helium, neon, argon, krypton, xenon and sometimes other elements. Though these gases are present "in virtually all meteorites," the Fayetteville meteorite has ~2,000,000 x10−8 ccSTP/g helium, or ~2% helium by volume equivalent. In comparison, background level is a few ppm.

<span class="mw-page-title-main">Prebiotic atmosphere</span> Second atmosphere on Earth

The prebiotic atmosphere is the second atmosphere present on Earth before today's biotic, oxygen-rich third atmosphere, and after the first atmosphere of Earth's formation. The formation of the Earth, roughly 4.5 billion years ago, involved multiple collisions and coalescence of planetary embryos. This was followed by a <100 million year period on Earth where a magma ocean was present, the atmosphere was mainly steam, and surface temperatures reached up to 8,000 K (14,000 °F). Earth's surface then cooled and the atmosphere stabilized, establishing the prebiotic atmosphere. The environmental conditions during this time period were quite different from today: the Sun was ~30% dimmer overall yet brighter at ultraviolet and x-ray wavelengths, there was a liquid ocean, it is unknown if there were continents but oceanic islands were likely, Earth's interior chemistry was different, and there was a larger flux of impactors hitting Earth's surface.

Xenon isotope geochemistry uses the abundance of xenon (Xe) isotopes and total xenon to investigate how Xe has been generated, transported, fractionated, and distributed in planetary systems. Xe has nine stable or very long-lived isotopes. Radiogenic 129Xe and fissiogenic 131,132,134,136Xe isotopes are of special interest in geochemical research. The radiogenic and fissiogenic properties can be used in deciphering the early chronology of Earth. Elemental Xe in the atmosphere is depleted and isotopically enriched in heavier isotopes relative to estimated solar abundances. The depletion and heavy isotopic enrichment can be explained by hydrodynamic escape to space that occurred in Earth's early atmosphere. Differences in the Xe isotope distribution between the deep mantle, shallower Mid-ocean Ridge Basalts (MORBs), and the atmosphere can be used to deduce Earth's history of formation and differentiation of the solid Earth into layers.

References

  1. "The World Factbook". www.cia.gov. Retrieved 2016-03-17.
  2. US Department of Commerce, National Oceanic and Atmospheric Administration. "Are there oceans on other planets?". oceanservice.noaa.gov. Retrieved 2020-07-16.
  3. Taylor Redd, Nola (April 1, 2019). "Where did Earths water come from". Astronomy.com. Retrieved 2020-07-16.
  4. 1 2 Pepin, Robert O. (July 1991). "On the origin and early evolution of terrestrial planet atmospheres and meteoritic volatiles". Icarus. 92 (1): 2–79. Bibcode:1991Icar...92....2P. doi:10.1016/0019-1035(91)90036-s. ISSN   0019-1035.
  5. Zahnle, Kevin J.; Gacesa, Marko; Catling, David C. (January 2019). "Strange messenger: A new history of hydrogen on Earth, as told by Xenon". Geochimica et Cosmochimica Acta. 244: 56–85. arXiv: 1809.06960 . Bibcode:2019GeCoA.244...56Z. doi:10.1016/j.gca.2018.09.017. ISSN   0016-7037. S2CID   119079927.
  6. Canup, Robin M.; Asphaug, Erik (August 2001). "Origin of the Moon in a giant impact near the end of the Earth's formation". Nature. 412 (6848): 708–712. Bibcode:2001Natur.412..708C. doi:10.1038/35089010. ISSN   0028-0836. PMID   11507633. S2CID   4413525.
  7. Cuk, M.; Stewart, S. T. (2012-10-17). "Making the Moon from a Fast-Spinning Earth: A Giant Impact Followed by Resonant Despinning". Science. 338 (6110): 1047–1052. Bibcode:2012Sci...338.1047C. doi: 10.1126/science.1225542 . ISSN   0036-8075. PMID   23076099. S2CID   6909122.
  8. Sleep, N. H.; Zahnle, K.; Neuhoff, P. S. (2001). "Initiation of clement surface conditions on the earliest Earth". Proceedings of the National Academy of Sciences. 98 (7): 3666–3672. Bibcode:2001PNAS...98.3666S. doi: 10.1073/pnas.071045698 . PMC   31109 . PMID   11259665.
  9. 1 2 Pinti, Daniele L.; Arndt, Nicholas (2014), "Oceans, Origin of", Encyclopedia of Astrobiology, Springer Berlin Heidelberg, pp. 1–5, doi:10.1007/978-3-642-27833-4_1098-4, ISBN   978-3-642-27833-4
  10. Cates, N.L.; Mojzsis, S.J. (March 2007). "Pre-3750 Ma supracrustal rocks from the Nuvvuagittuq supracrustal belt, northern Québec". Earth and Planetary Science Letters. 255 (1–2): 9–21. Bibcode:2007E&PSL.255....9C. doi:10.1016/j.epsl.2006.11.034. ISSN   0012-821X.
  11. O'Neil, Jonathan; Carlson, Richard W.; Paquette, Jean-Louis; Francis, Don (November 2012). "Formation age and metamorphic history of the Nuvvuagittuq Greenstone Belt" (PDF). Precambrian Research. 220–221: 23–44. Bibcode:2012PreR..220...23O. doi:10.1016/j.precamres.2012.07.009. ISSN   0301-9268.
  12. Piani, Laurette (28 August 2020). "Earth's water may have been inherited from material similar to enstatite chondrite meteorites". Science . 369 (6507): 1110–1113. Bibcode:2020Sci...369.1110P. doi:10.1126/science.aba1948. PMID   32855337. S2CID   221342529 . Retrieved 28 August 2020.
  13. Washington University in St. Louis (27 August 2020). "Meteorite study suggests Earth may have been wet since it formed - Enstatite chondrite meteorites, once considered 'dry,' contain enough water to fill the oceans -- and then some". EurekAlert! . Retrieved 28 August 2020.
  14. American Association for the Advancement of Science (27 August 2020). "Unexpected abundance of hydrogen in meteorites reveals the origin of Earth's water". EurekAlert! . Retrieved 28 August 2020.
  15. Wilde, S.A.; Valley, J.W.; Peck, W.H.; Graham, C.M. (2001). "Evidence from detrital zircons for the existence of continental crust and oceans on the Earth 4.4 nGyr ago" (PDF). Nature. 409 (6817): 175–8. Bibcode:2001Natur.409..175W. doi:10.1038/35051550. PMID   11196637. S2CID   4319774.
  16. "ANU - Research School of Earth Sciences - ANU College of Science - Harrison". Ses.anu.edu.au. Archived from the original on 2006-06-21. Retrieved 2009-08-20.
  17. "ANU - OVC - MEDIA - MEDIA RELEASES - 2005 - NOVEMBER - 181105HARRISONCONTINENTS". Info.anu.edu.au. Retrieved 2009-08-20.
  18. "A Cool Early Earth". Geology.wisc.edu. Archived from the original on 2013-06-16. Retrieved 2009-08-20.
  19. Chang, Kenneth (2008-12-02). "A New Picture of the Early Earth". The New York Times . Retrieved 2010-05-20.
  20. 1 2 3 Genda, Hidenori (2016). "Origin of Earth's oceans: An assessment of the total amount, history and supply of water". Geochemical Journal. 50 (1): 27–42. Bibcode:2016GeocJ..50...27G. doi: 10.2343/geochemj.2.0398 . ISSN   0016-7002. S2CID   92988014.
  21. 1 2 3 Peslier, Anne H.; Schönbächler, Maria; Busemann, Henner; Karato, Shun-Ichiro (2017-08-09). "Water in the Earth's Interior: Distribution and Origin". Space Science Reviews. 212 (1–2): 743–810. Bibcode:2017SSRv..212..743P. doi:10.1007/s11214-017-0387-z. ISSN   0038-6308. S2CID   125860164.
  22. Wu, Jun; Desch, Steven J.; Schaefer, Laura; Elkins-Tanton, Linda T.; Pahlevan, Kaveh; Buseck, Peter R. (October 2018). "Origin of Earth's Water: Chondritic Inheritance Plus Nebular Ingassing and Storage of Hydrogen in the Core". Journal of Geophysical Research: Planets. 123 (10): 2691–2712. Bibcode:2018JGRE..123.2691W. doi:10.1029/2018je005698. ISSN   2169-9097. S2CID   134803572.
  23. Gradie, J.; Tedesco, E. (1982-06-25). "Compositional Structure of the Asteroid Belt". Science. 216 (4553): 1405–1407. Bibcode:1982Sci...216.1405G. doi:10.1126/science.216.4553.1405. ISSN   0036-8075. PMID   17798362. S2CID   32447726.
  24. Martin, Rebecca G.; Livio, Mario (2013-07-03). "On the evolution of the snow line in protoplanetary discs – II. Analytic approximations". Monthly Notices of the Royal Astronomical Society. 434 (1): 633–638. arXiv: 1207.4284 . Bibcode:2013MNRAS.434..633M. doi: 10.1093/mnras/stt1051 . ISSN   0035-8711. S2CID   118419642.
  25. Andrew Fazekas, Mystery of Earth's Water Origin Solved, Nationalgeographic.com, 30 October 2014
  26. Sarafian, A. R.; Nielsen, S. G.; Marschall, H. R.; McCubbin, F. M.; Monteleone, B. D. (2014-10-30). "Early accretion of water in the inner solar system from a carbonaceous chondrite-like source". Science. 346 (6209): 623–626. Bibcode:2014Sci...346..623S. doi:10.1126/science.1256717. ISSN   0036-8075. PMID   25359971. S2CID   30471982.
  27. Drake, Michael J (2005). "Origin of water in the terrestrial planets". Meteoritics & Planetary Science. 40 (4): 519–527. Bibcode:2005M&PS...40..519D. doi: 10.1111/j.1945-5100.2005.tb00960.x .
  28. Drake, Michael J.; et al. (August 2005). "Origin of water in the terrestrial planets". Asteroids, Comets, and Meteors (IAU S229). 229th Symposium of the International Astronomical Union. Vol. 1. Búzios, Rio de Janeiro, Brazil: Cambridge University Press. pp. 381–394. Bibcode:2006IAUS..229..381D. doi: 10.1017/S1743921305006861 . ISBN   978-0-521-85200-5.
  29. Cowen, Ron (9 May 2013). "Common source for Earth and Moon water". Nature. doi:10.1038/nature.2013.12963. S2CID   131174435.
  30. Dauphas, Nicolas (October 2003). "The dual origin of the terrestrial atmosphere". Icarus. 165 (2): 326–339. arXiv: astro-ph/0306605 . Bibcode:2003Icar..165..326D. doi:10.1016/s0019-1035(03)00198-2. ISSN   0019-1035. S2CID   14982509.
  31. Owen, Tobias; Bar-Nun, Akiva; Kleinfeld, Idit (July 1992). "Possible cometary origin of heavy noble gases in the atmospheres of Venus, Earth and Mars". Nature. 358 (6381): 43–46. Bibcode:1992Natur.358...43O. doi:10.1038/358043a0. ISSN   0028-0836. PMID   11536499. S2CID   4357750.
  32. Gomes, R.; Levison, H. F.; Tsiganis, K.; Morbidelli, A. (May 2005). "Origin of the cataclysmic Late Heavy Bombardment period of the terrestrial planets". Nature. 435 (7041): 466–469. Bibcode:2005Natur.435..466G. doi: 10.1038/nature03676 . ISSN   0028-0836. PMID   15917802.
  33. 1 2 Budde, Gerrit; Burkhardt, Christoph; Kleine, Thorsten (20 May 2019). "Molybdenum isotopic evidence for the late accretion of outer Solar System material to Earth". Nature Astronomy. 3 (8): 736–741. Bibcode:2019NatAs...3..736B. doi:10.1038/s41550-019-0779-y. ISSN   2397-3366. S2CID   181460133.
  34. Yang, J.; Turner, M. S.; Schramm, D. N.; Steigman, G.; Olive, K. A. (June 1984). "Primordial nucleosynthesis - A critical comparison of theory and observation". The Astrophysical Journal. 281: 493. Bibcode:1984ApJ...281..493Y. doi:10.1086/162123. ISSN   0004-637X.
  35. Hagemann, R.; Nief, G.; Roth, E. (January 1970). "Absolute isotopic scale for deuterium analysis of natural waters. Absolute D/H ratio for SMOW". Tellus. 22 (6): 712–715. Bibcode:1970Tell...22..712H. doi: 10.3402/tellusa.v22i6.10278 . ISSN   0040-2826.
  36. Genda, Hidenori; Ikoma, Masahiro (March 2008). "Origin of the ocean on the Earth: Early evolution of water D/H in a hydrogen-rich atmosphere". Icarus. 194 (1): 42–52. arXiv: 0709.2025 . Bibcode:2008Icar..194...42G. doi:10.1016/j.icarus.2007.09.007. ISSN   0019-1035.
  37. Hallis, Lydia J.; Huss, Gary R.; Nagashima, Kazuhide; Taylor, G. Jeffrey; Halldórsson, Sæmundur A.; Hilton, David R.; Mottl, Michael J.; Meech, Karen J. (2015-11-13). "Evidence for primordial water in Earth's deep mantle". Science. 350 (6262): 795–797. Bibcode:2015Sci...350..795H. doi:10.1126/science.aac4834. ISSN   0036-8075. PMID   26564850.
  38. Catling, David C. (2017). Atmospheric Evolution on Inhabited and Lifeless Worlds. Cambridge University Press. p. 180. Bibcode:2017aeil.book.....C. ISBN   978-1-139-02055-8. OCLC   982451455.
  39. Donahue, T. M.; Hoffman, J. H.; Hodges, R. R.; Watson, A. J. (1982-05-07). "Venus Was Wet: A Measurement of the Ratio of Deuterium to Hydrogen". Science. 216 (4546): 630–633. Bibcode:1982Sci...216..630D. doi:10.1126/science.216.4546.630. ISSN   0036-8075. PMID   17783310. S2CID   36740141.
  40. Q. Choi, Charles (2014-12-10). "Most of Earth's Water Came from Asteroids, Not Comets". Space.com. Retrieved 2020-02-09.
  41. Daly, R. Terik; Schultz, Peter H. (25 April 2018). "The delivery of water by impacts from planetary accretion to present". Science Advances . 4 (4): eaar2632. Bibcode:2018SciA....4.2632D. doi:10.1126/sciadv.aar2632. PMC   5916508 . PMID   29707636.
  42. Gorman, James (15 May 2018). "How Asteroids May Have Brought Water to Earth". The New York Times . Retrieved 16 May 2018.
  43. Alexander, Conel M. O'D. (2017-04-17). "The origin of inner Solar System water". Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. 375 (2094): 20150384. Bibcode:2017RSPTA.37550384A. doi:10.1098/rsta.2015.0384. ISSN   1364-503X. PMC   5394251 . PMID   28416723.
  44. Chan, Queenie H. S.; et al. (10 January 2018). "Organic matter in extraterrestrial water-bearing salt crystals". Science Advances . 4 (1, eaao3521): eaao3521. Bibcode:2018SciA....4.3521C. doi:10.1126/sciadv.aao3521. PMC   5770164 . PMID   29349297.
  45. Sarafian, Adam R.; Nielsen, Sune G.; Marschall, Horst R.; McCubbin, Francis M.; Monteleone, Brian D. (2014-10-31). "Early accretion of water in the inner solar system from a carbonaceous chondrite–like source". Science. 346 (6209): 623–626. Bibcode:2014Sci...346..623S. doi:10.1126/science.1256717. ISSN   0036-8075. PMID   25359971. S2CID   30471982.
  46. Morbidelli, Alessandro; et al. (2000). "Source regions and timescales for the delivery of water to the Earth". Meteoritics & Planetary Science . 35 (6): 1309–1329. Bibcode:2000M&PS...35.1309M. doi: 10.1111/j.1945-5100.2000.tb01518.x .
  47. Daly, Luke; Lee, Martin R.; Hallis, Lydia J.; Ishii, Hope A.; Bradley, John P.; Bland, Phillip. A.; Saxey, David W.; Fougerouse, Denis; Rickard, William D. A.; Forman, Lucy V.; Timms, Nicholas E.; Jourdan, Fred; Reddy, Steven M.; Salge, Tobias; Quadir, Zakaria; Christou, Evangelos; Cox, Morgan A.; Aguiar, Jeffrey A.; Hattar, Khalid; Monterrosa, Anthony; Keller, Lindsay P.; Christoffersen, Roy; Dukes, Catherine A.; Loeffler, Mark J.; Thompson, Michelle S. (December 2021). "Solar wind contributions to Earth's oceans" (PDF). Nature Astronomy. 5 (12): 1275–1285. Bibcode:2021NatAs...5.1275D. doi:10.1038/s41550-021-01487-w. OSTI   1834330. S2CID   244744492.
  48. Daly, Luke; Lee, Martin R.; Timms, Nick; Bland, Phil (November 30, 2021). "Up to half of Earth's water may come from solar wind and space dust". Phys Org.
  49. Eberhardt, P.; Dolder, U.; Schulte, W.; Krankowsky, D.; Lämmerzahl, P.; Hoffman, J. H.; Hodges, R. R.; Berthelier, J. J.; Illiano, J. M. (1988), "The D/H ratio in water from comet P/Halley", Exploration of Halley's Comet, Springer Berlin Heidelberg, pp. 435–437, doi:10.1007/978-3-642-82971-0_79, ISBN   978-3-642-82973-4
  50. Meier, R. (1998-02-06). "A Determination of the HDO/H2O Ratio in Comet C/1995 O1 (Hale-Bopp)". Science. 279 (5352): 842–844. Bibcode:1998Sci...279..842M. doi:10.1126/science.279.5352.842. ISSN   0036-8075. PMID   9452379.
  51. Bockelée-Morvan, D.; Gautier, D.; Lis, D.C.; Young, K.; Keene, J.; Phillips, T.; Owen, T.; Crovisier, J.; Goldsmith, P.F. (May 1998). "Deuterated Water in Comet C/1996 B2 (Hyakutake) and Its Implications for the Origin of Comets". Icarus. 133 (1): 147–162. Bibcode:1998Icar..133..147B. doi:10.1006/icar.1998.5916. hdl: 2060/19980035143 . ISSN   0019-1035. S2CID   121830932.
  52. 1 2 Hartogh, Paul; Lis, Dariusz C.; Bockelée-Morvan, Dominique; de Val-Borro, Miguel; Biver, Nicolas; Küppers, Michael; Emprechtinger, Martin; Bergin, Edwin A.; Crovisier, Jacques (October 2011). "Ocean-like water in the Jupiter-family comet 103P/Hartley 2". Nature. 478 (7368): 218–220. Bibcode:2011Natur.478..218H. doi:10.1038/nature10519. ISSN   0028-0836. PMID   21976024. S2CID   3139621.
  53. Dauphas, N (December 2000). "The Late Asteroidal and Cometary Bombardment of Earth as Recorded in Water Deuterium to Protium Ratio". Icarus. 148 (2): 508–512. Bibcode:2000Icar..148..508D. doi:10.1006/icar.2000.6489. ISSN   0019-1035.
  54. Duncan, M. J. (1997-06-13). "A Disk of Scattered Icy Objects and the Origin of Jupiter-Family Comets". Science. 276 (5319): 1670–1672. Bibcode:1997Sci...276.1670D. doi:10.1126/science.276.5319.1670. ISSN   0036-8075. PMID   9180070.
  55. Altwegg, K.; Balsiger, H.; Bar-Nun, A.; Berthelier, J. J.; Bieler, A.; Bochsler, P.; Briois, C.; Calmonte, U.; Combi, M. (2015-01-23). "67P/Churyumov-Gerasimenko, a Jupiter family comet with a high D/H ratio" (PDF). Science. 347 (6220): 1261952. Bibcode:2015Sci...347A.387A. doi:10.1126/science.1261952. ISSN   0036-8075. PMID   25501976. S2CID   206563296.
  56. Alexander, C. M. O.; Bowden, R.; Fogel, M. L.; Howard, K. T.; Herd, C. D. K.; Nittler, L. R. (2012-07-12). "The Provenances of Asteroids, and Their Contributions to the Volatile Inventories of the Terrestrial Planets". Science. 337 (6095): 721–723. Bibcode:2012Sci...337..721A. doi: 10.1126/science.1223474 . ISSN   0036-8075. PMID   22798405. S2CID   206542013.