Geological history of oxygen

Last updated

O2 build-up in the Earth's atmosphere. Red and green lines represent the range of the estimates while time is measured in billions of years ago (Ga).
Stage 1 (3.85-2.45 Ga): Practically no O2 in the atmosphere.
Stage 2 (2.45-1.85 Ga): O2 produced, but absorbed in oceans and seabed rock.
Stage 3 (1.85-0.85 Ga): O2 starts to gas out of the oceans, but is absorbed by land surfaces and formation of ozone layer.
Stages 4 and 5 (0.85 Ga-present): O2 sinks filled, the gas accumulates. Oxygenation-atm-2.svg
O2 build-up in the Earth's atmosphere. Red and green lines represent the range of the estimates while time is measured in billions of years ago (Ga).
Stage 1 (3.85–2.45 Ga): Practically no O2 in the atmosphere.
Stage 2 (2.45–1.85 Ga): O2 produced, but absorbed in oceans and seabed rock.
Stage 3 (1.85–0.85 Ga): O2 starts to gas out of the oceans, but is absorbed by land surfaces and formation of ozone layer.
Stages 4 and 5 (0.85 Ga–present): O2 sinks filled, the gas accumulates.

Although oxygen is the most abundant element in Earth's crust, due to its high reactivity it mostly exists in compound (oxide) forms such as water, carbon dioxide, iron oxides and silicates. Before photosynthesis evolved, Earth's atmosphere had no free diatomic elemental oxygen (O2). [2] Small quantities of oxygen were released by geological [3] and biological processes, but did not build up in the reducing atmosphere due to reactions with then-abundant reducing gases such as atmospheric methane and hydrogen sulfide and surface reductants such as ferrous iron.

Contents

Oxygen began building up in the prebiotic atmosphere at approximately 1.85 Ga during the Neoarchean-Paleoproterozoic boundary, a paleogeological event known as the Great Oxygenation Event (GOE). At current rates of primary production, today's concentration of oxygen could be produced by photosynthetic organisms in 2,000 years. [4] In the absence of plants, the rate of oxygen production by photosynthesis was slower in the Precambrian, and the concentrations of O2 attained were less than 10% of today's and probably fluctuated greatly.

The increase in oxygen concentrations had wide ranging and significant impacts on Earth's biosphere. Most significantly, the rise of oxygen and the oxidative depletion of greenhouse gases (especially atmospheric methane) due to the GOE led to an icehouse Earth that caused a mass extinction of anaerobic microbes, but paved the way for the evolution of eukaryotes and later the rise of complex lifeforms.

Before the Great Oxidation Event

Photosynthetic prokaryotic organisms that produced O2 as a byproduct lived long before the first build-up of free oxygen in the atmosphere, [5] perhaps as early as 3.5 billion years ago. The oxygen cyanobacteria produced would have been rapidly removed from the oceans by weathering of reducing minerals,[ citation needed ] most notably ferrous iron. [1] This rusting led to the deposition of the oxidized ferric iron oxide on the ocean floor, forming banded iron formations. Thus, the oceans rusted and turned red. Oxygen only began to persist in the atmosphere in small quantities about 50 million years before the start of the Great Oxygenation Event. [6]

Effects on life

Early fluctuations in oxygen concentration had little direct effect on life, with mass extinctions not observed until around the start of the Cambrian period, 538.8  million years ago. [7] The presence of O
2
provided life with new opportunities. Aerobic metabolism is more efficient than anaerobic pathways, and the presence of oxygen created new possibilities for life to explore. [8] [9] Since the start of the Cambrian period, atmospheric oxygen concentrations have fluctuated between 15% and 35% of atmospheric volume. [10] 430-million-year-old fossilized charcoal produced by wildfires show that the atmospheric oxygen levels in the Silurian must have been equivalent to, or possibly above, present day levels. [11] The maximum of 35% was reached towards the end of the Carboniferous period (about 300 million years ago), a peak which may have contributed to the large size of various arthropods, including insects, millipedes and scorpions. [9] Whilst human activities, such as the burning of fossil fuels, affect relative carbon dioxide concentrations, their effect on the much larger concentration of oxygen is less significant. [12]

The Great Oxygenation Event had the first major effect on the course of evolution. Due to the rapid buildup of oxygen in the atmosphere, the mostly anaerobic microbial biosphere that existed during the Archean eon was devastated, and only the aerobes that had antioxidant capabilities to neutralize oxygen thrived out in the open. [9] This then led to symbiosis of anaerobic and aerobic organisms, who metabolically complemented each other, and eventually led to endosymbiosis and symbiogenesis, the evolution of eukaryotes, during the Proterozoic eon, who were now actually reliant on aerobic respiration to survive. After the Huronian glaciation came to an end, the Earth entered a long period of geological and climatic stability known as the Boring Billion. However, this long period was noticeably euxinic, meaning oxygen was scarce and the ocean and atmosphere were significantly sulfidic, and that evolution then was likely comparatively slow and quite conservative.

The Boring Billion ended during the Neoproterozoic period with a significant increase in photosynthetic activities, causing oxygen levels to rise 10- to 20-fold to about one-tenth of the modern level. This rise in oxygen concentration, known as the Neoproterozoic oxygenation event or "Second Great Oxygenation Event", was likely caused by the evolution of nitrogen fixation in cyanobacteria and the rise of eukaryotic photoautotrophs (green and red algae), and often cited as a possible contributor to later large-scale evolutionary radiations such as the Avalon explosion and the Cambrian explosion, which not only trended in larger [13] but also more robust and motile multicellular organisms. The climatic changes associated with rising oxygen also produced cycles of glaciation and extinction events, [9] each of which created disturbances that sped up ecological turnovers. During the Silurian and Devonian periods, the colonization and proliferation on land by early plants (which evolved from freshwater green algae) further increased the atmospheric oxygen concentration, leading to the historic peak during the Carboniferous period.

Data show an increase in biovolume soon after oxygenation events by more than 100-fold and a moderate correlation between atmospheric oxygen and maximum body size later in the geological record. [13] The large size of many arthropods in the Carboniferous period, when the oxygen concentration in the atmosphere reached 35%, has been attributed to the limiting role of diffusion in these organisms' metabolism. [14] But J.B.S. Haldane's essay [15] points out that it would only apply to insects. However, the biological basis for this correlation is not firm, and many lines of evidence show that oxygen concentration is not size-limiting in modern insects. [9] Ecological constraints can better explain the diminutive size of post-Carboniferous dragonflies – for instance, the appearance of flying competitors such as pterosaurs, birds, and bats. [9]

Rising oxygen concentrations have been cited as one of several drivers for evolutionary diversification, although the physiological arguments behind such arguments are questionable, and a consistent pattern between oxygen concentrations and the rate of evolution is not clearly evident. [9] The most celebrated link between oxygen and evolution occurred at the end of the last of the Snowball Earth glaciations, where complex multicellular life is first found in the fossil record. Under low oxygen concentrations and before the evolution of nitrogen fixation, biologically-available nitrogen compounds were in limited supply, [16] and periodic "nitrogen crises" could render the ocean inhospitable to life. [9] Significant concentrations of oxygen were just one of the prerequisites for the evolution of complex life. [9] Models based on uniformitarian principles (i.e. extrapolating present-day ocean dynamics into deep time) suggest that such a concentration was only reached immediately before metazoa first appeared in the fossil record. [9] Further, anoxic or otherwise chemically "inhospitable" oceanic conditions that resemble those supposed to inhibit macroscopic life re-occurred at intervals through the early Cambrian, and also in the late Cretaceous with no apparent effect on lifeforms at these times. [9] This might suggest that the geochemical signatures found in ocean sediments reflect the atmosphere in a different way before the Cambrian – perhaps as a result of the fundamentally different mode of nutrient cycling in the absence of planktivory. [7] [9]

An oxygen-rich atmosphere can release phosphorus and iron from rock, by weathering, and these elements then become available for sustenance of new species whose metabolisms require these elements as oxides. [2]

See Also

Related Research Articles

<span class="mw-page-title-main">Oxygen</span> Chemical element with atomic number 8 (O)

Oxygen is a chemical element with the symbol O and atomic number 8. It is a member of the chalcogen group in the periodic table, a highly reactive nonmetal, and a potent oxidizing agent that readily forms oxides with most elements as well as with other compounds. Oxygen is the most abundant element in Earth's crust, and the third-most abundant element in the universe after hydrogen and helium.

The Precambrian is the earliest part of Earth's history, set before the current Phanerozoic Eon. The Precambrian is so named because it preceded the Cambrian, the first period of the Phanerozoic Eon, which is named after Cambria, the Latinized name for Wales, where rocks from this age were first studied. The Precambrian accounts for 88% of the Earth's geologic time.

<span class="mw-page-title-main">Snowball Earth</span> Worldwide glaciation episodes during the Proterozoic eon

The Snowball Earth is a geohistorical hypothesis that proposes during one or more of Earth's icehouse climates, the planet's surface became nearly entirely frozen with no liquid oceanic or surface water exposed to the atmosphere. The most academically mentioned period of such a global ice age is believed to have occurred some time before 650 mya during the Cryogenian period, which included at least two large glacial periods, the Sturtian and Marinoan glaciations.

<span class="mw-page-title-main">Banded iron formation</span> Distinctive layered units of iron-rich sedimentary rock that are almost always of Precambrian age

Banded iron formations are distinctive units of sedimentary rock consisting of alternating layers of iron oxides and iron-poor chert. They can be up to several hundred meters in thickness and extend laterally for several hundred kilometers. Almost all of these formations are of Precambrian age and are thought to record the oxygenation of the Earth's oceans. Some of the Earth's oldest rock formations, which formed about 3,700 million years ago (Ma), are associated with banded iron formations.

<span class="mw-page-title-main">Proterozoic</span> Geologic eon, 2500–539 million years ago

The Proterozoic is the third of the four geologic eons of Earth's history, spanning the time interval from 2500 to 538.8 Mya, the longest eon of the Earth's geologic time scale. It is preceded by the Archean and followed by the Phanerozoic, and is the most recent part of the Precambrian "supereon".

<span class="mw-page-title-main">Paleoproterozoic</span> First era of the Proterozoic Eon

The Paleoproterozoic Era is the first of the three sub-divisions (eras) of the Proterozoic eon, and also the longest era of the Earth's geological history, spanning from 2,500 to 1,600 million years ago (2.5–1.6 Ga). It is further subdivided into four geologic periods, namely the Siderian, Rhyacian, Orosirian and Statherian.

A reducing atmosphere is an atmospheric condition in which oxidation is prevented by absence of oxygen and other oxidizing gases or vapours, and which may contain actively reductant gases such as hydrogen, carbon monoxide, methane and hydrogen sulfide that would be readily oxidized to remove any free oxygen. Although Early Earth had had a reducing prebiotic atmosphere prior to the Proterozoic eon, starting at about 2.5 billion years ago in the late Neoarchaean period, the Earth's atmosphere experienced a significant rise in oxygen and transitioned to an oxidizing atmosphere with a surplus of molecular oxygen (dioxygen, O2) as the primary oxidizing agent.

<span class="mw-page-title-main">Oxygen cycle</span> Biogeochemical cycle of oxygen

Oxygen cycle refers to the movement of oxygen through the atmosphere (air), biosphere (plants and animals) and the lithosphere (the Earth’s crust). The oxygen cycle demonstrates how free oxygen is made available in each of these regions, as well as how it is used. The oxygen cycle is the biogeochemical cycle of oxygen atoms between different oxidation states in ions, oxides, and molecules through redox reactions within and between the spheres/reservoirs of the planet Earth. The word oxygen in the literature typically refers to the most common oxygen allotrope, elemental/diatomic oxygen (O2), as it is a common product or reactant of many biogeochemical redox reactions within the cycle. Processes within the oxygen cycle are considered to be biological or geological and are evaluated as either a source (O2 production) or sink (O2 consumption).

<span class="mw-page-title-main">Iron cycle</span> Biogeochemical cycle of Fe2+/Fe3+

The iron cycle (Fe) is the biogeochemical cycle of iron through the atmosphere, hydrosphere, biosphere and lithosphere. While Fe is highly abundant in the Earth's crust, it is less common in oxygenated surface waters. Iron is a key micronutrient in primary productivity, and a limiting nutrient in the Southern ocean, eastern equatorial Pacific, and the subarctic Pacific referred to as High-Nutrient, Low-Chlorophyll (HNLC) regions of the ocean.

<span class="mw-page-title-main">Geobiology</span> Study of interactions between Earth and the biosphere

Geobiology is a field of scientific research that explores the interactions between the physical Earth and the biosphere. It is a relatively young field, and its borders are fluid. There is considerable overlap with the fields of ecology, evolutionary biology, microbiology, paleontology, and particularly soil science and biogeochemistry. Geobiology applies the principles and methods of biology, geology, and soil science to the study of the ancient history of the co-evolution of life and Earth as well as the role of life in the modern world. Geobiologic studies tend to be focused on microorganisms, and on the role that life plays in altering the chemical and physical environment of the pedosphere, which exists at the intersection of the lithosphere, atmosphere, hydrosphere and/or cryosphere. It differs from biogeochemistry in that the focus is on processes and organisms over space and time rather than on global chemical cycles.

<span class="mw-page-title-main">Sulfur cycle</span> Biogeochemical cycle of sulfur

The important sulfur cycle is a biogeochemical cycle in which the sulfur moves between rocks, waterways and living systems. It is important in geology as it affects many minerals and in life because sulfur is an essential element (CHNOPS), being a constituent of many proteins and cofactors, and sulfur compounds can be used as oxidants or reductants in microbial respiration. The global sulfur cycle involves the transformations of sulfur species through different oxidation states, which play an important role in both geological and biological processes. Steps of the sulfur cycle are:

<span class="mw-page-title-main">Great Oxidation Event</span> Paleoproterozoic surge in atmospheric oxygen

The Great Oxidation Event (GOE) or Great Oxygenation Event, also called the Oxygen Catastrophe, Oxygen Revolution, Oxygen Crisis or Oxygen Holocaust, was a time interval during the Earth's Paleoproterozoic era when the Earth's atmosphere and shallow seas first experienced a rise in the concentration of free oxygen. This began approximately 2.460–2.426 Ga (billion years) ago during the Siderian period and ended approximately 2.060 Ga ago during the Rhyacian. Geological, isotopic and chemical evidence suggests that biologically produced molecular oxygen (dioxygen or O2) started to accumulate in the Archean prebiotic atmosphere due to microbial photosynthesis, and eventually changed it from a weakly reducing atmosphere practically devoid of oxygen into an oxidizing one containing abundant free oxygen, with oxygen levels being as high as 10% of modern atmospheric level by the end of the GOE.

<span class="mw-page-title-main">Purple Earth hypothesis</span> Astrobiological hypothesis regarding early photosynethetic organisms

The Purple Earth Hypothesis (PEH) is an astrobiological hypothesis, first proposed by molecular biologist Shiladitya DasSarma in 2007, that the earliest photosynthetic life forms of Early Earth were based on the simpler molecule retinal rather than the more complex porphyrin-based chlorophyll, making the surface biosphere appear purplish rather than its current greenish color. It is estimated to have occurred between 3.5 and 2.4 billion years ago during the Archean eon, prior to the Great Oxygenation Event and Huronian glaciation.

A paleoatmosphere is an atmosphere, particularly that of Earth, at some unspecified time in the geological past.

The Pasteur point is a level of oxygen above which facultative aerobic microorganisms and facultative anaerobes adapt from fermentation to aerobic respiration. It is also used to mark the level of oxygen in the early atmosphere of the Earth that is believed to have led to major evolutionary changes. It is named after Louis Pasteur, the French microbiologist who studied anaerobic microbial fermentation, and is related to the Pasteur effect.

The Boring Billion, otherwise known as the Mid Proterozoic and Earth's Middle Ages, is an informal geological time period between 1.8 and 0.8 billion years ago (Ga) during the middle Proterozoic eon spanning from the Statherian to the Tonian periods, characterized by more or less tectonic stability, climatic stasis and slow biological evolution. Although it is bordered by two different oxygenation events and two global glacial events, the Boring Billion period itself actually had very low oxygen levels and no geological evidence of glaciations.

Evolution of metal ions in biological systems refers to the incorporation of metallic ions into living organisms and how it has changed over time. Metal ions have been associated with biological systems for billions of years, but only in the last century have scientists began to truly appreciate the scale of their influence. Major and minor metal ions have become aligned with living organisms through the interplay of biogeochemical weathering and metabolic pathways involving the products of that weathering. The associated complexes have evolved over time.

Euxinia or euxinic conditions occur when water is both anoxic and sulfidic. This means that there is no oxygen (O2) and a raised level of free hydrogen sulfide (H2S). Euxinic bodies of water are frequently strongly stratified; have an oxic, highly productive, thin surface layer; and have anoxic, sulfidic bottom water. The word "euxinia" is derived from the Greek name for the Black Sea (Εὔξεινος Πόντος (Euxeinos Pontos)) which translates to "hospitable sea". Euxinic deep water is a key component of the Canfield ocean, a model of oceans during part of the Proterozoic eon (a part specifically known as the Boring Billion) proposed by Donald Canfield, an American geologist, in 1998. There is still debate within the scientific community on both the duration and frequency of euxinic conditions in the ancient oceans. Euxinia is relatively rare in modern bodies of water, but does still happen in places like the Black Sea and certain fjords.

<span class="mw-page-title-main">Evolution of bacteria</span> Development of bacteria throughout time

The evolution of bacteria has progressed over billions of years since the Precambrian time with their first major divergence from the archaeal/eukaryotic lineage roughly 3.2-3.5 billion years ago. This was discovered through gene sequencing of bacterial nucleoids to reconstruct their phylogeny. Furthermore, evidence of permineralized microfossils of early prokaryotes was also discovered in the Australian Apex Chert rocks, dating back roughly 3.5 billion years ago during the time period known as the Precambrian time. This suggests that an organism in of the phylum Thermotogota was the most recent common ancestor of modern bacteria.

The Neoproterozoic Oxygenation Event (NOE), also called the Second Great Oxidation Event, was a geologic time interval between around 850 and 540 million years ago during the Neoproterozoic era, which saw a very significant increase in oxygen levels in Earth's atmosphere and oceans. Taking place after the end to the Boring Billion, an euxinic period of extremely low atmospheric oxygen spanning from the Statherian period of the Paleoproterozoic era to the Tonian period of the Neoproterozoic era, the NOE was the second major increase in atmospheric and oceanic oxygen concentration on Earth, though it was not as prominent as the Great Oxidation Event (GOE) of the Neoarchean-Paleoproterozoic boundary. Unlike the GOE, it is unclear whether the NOE was a synchronous, global event or a series of asynchronous, regional oxygenation intervals with unrelated causes.

References

  1. 1 2 Holland, H. D. (2006). "The oxygenation of the atmosphere and oceans". Philosophical Transactions of the Royal Society B: Biological Sciences. 361 (1470): 903–915. doi:10.1098/rstb.2006.1838. PMC   1578726 . PMID   16754606.
  2. 1 2 Zimmer, Carl (3 October 2013). "Earth's Oxygen: A Mystery Easy to Take for Granted". New York Times . Retrieved 3 October 2013.
  3. Stone, Jordan; Edgar, John O.; Gould, Jamie A.; Telling, Jon (2022-08-08). "Tectonically-driven oxidant production in the hot biosphere". Nature Communications. 13 (1): 4529. Bibcode:2022NatCo..13.4529S. doi:10.1038/s41467-022-32129-y. ISSN   2041-1723. PMC   9360021 . PMID   35941147.
  4. Dole, M. (1965). "The Natural History of Oxygen". The Journal of General Physiology. 49 (1): Suppl:Supp5–27. doi:10.1085/jgp.49.1.5. PMC   2195461 . PMID   5859927.
  5. Dutkiewicz, A.; Volk, H.; George, S. C.; Ridley, J.; Buick, R. (2006). "Biomarkers from Huronian oil-bearing fluid inclusions: an uncontaminated record of life before the Great Oxidation Event". Geology. 34 (6): 437. Bibcode:2006Geo....34..437D. doi:10.1130/G22360.1.
  6. Anbar, A.; Duan, Y.; Lyons, T.; Arnold, G.; Kendall, B.; Creaser, R.; Kaufman, A.; Gordon, G.; Scott, C.; Garvin, J.; Buick, R. (2007). "A whiff of oxygen before the great oxidation event?". Science. 317 (5846): 1903–1906. Bibcode:2007Sci...317.1903A. doi:10.1126/science.1140325. PMID   17901330. S2CID   25260892.
  7. 1 2 Butterfield, N. J. (2007). "Macroevolution and macroecology through deep time". Palaeontology. 50 (1): 41–55. Bibcode:2007Palgy..50...41B. doi: 10.1111/j.1475-4983.2006.00613.x . S2CID   59436643.
  8. Freeman, Scott (2005). Biological Science, 2nd . Upper Saddle River, NJ: Pearson – Prentice Hall. pp.  214, 586. ISBN   978-0-13-140941-5.
  9. 1 2 3 4 5 6 7 8 9 10 11 12 Butterfield, N. J. (2009). "Oxygen, animals and oceanic ventilation: An alternative view". Geobiology. 7 (1): 1–7. Bibcode:2009Gbio....7....1B. doi:10.1111/j.1472-4669.2009.00188.x. PMID   19200141. S2CID   31074331.
  10. Berner, R. A. (Sep 1999). "Atmospheric oxygen over Phanerozoic time". Proceedings of the National Academy of Sciences of the United States of America. 96 (20): 10955–10957. Bibcode:1999PNAS...9610955B. doi: 10.1073/pnas.96.20.10955 . ISSN   0027-8424. PMC   34224 . PMID   10500106.
  11. Earliest record of wildfires provides insights into Earth's past vegetation and oxygen levels
  12. Emsley, John (2001). "Oxygen". Nature's Building Blocks: An A-Z Guide to the Elements. Oxford, England, UK: Oxford University Press. pp.  297–304. ISBN   978-0-19-850340-8.
  13. 1 2 Payne, J. L.; McClain, C. R.; Boyer, A. G; Brown, J. H.; Finnegan, S.; et al. (2011). "The evolutionary consequences of oxygenic photosynthesis: a body size perspective". Photosynth. Res.1007: 37-57. DOI 10.1007/s11120-010-9593-1
  14. Polet, Delyle (2011). "The Biggest Bugs: An investigation into the factors controlling the maximum size of insects". Eureka. 2 (1): 43–46. doi: 10.29173/eureka10299 .
  15. Haldane, J.B.S., On being the right size, paragraph 7
  16. Navarro-González, Rafaell; McKay, Christopher P.; Nna Mvondo, Delphine (Jul 2001). "A possible nitrogen crisis for Archaean life due to reduced nitrogen fixation by lightning" (PDF). Nature. 412 (5 July 2001): 61–64. Bibcode:2001Natur.412...61N. doi:10.1038/35083537. hdl: 10261/8224 . PMID   11452304. S2CID   4405370.