Superheated steam is steam at a temperature higher than its vaporization point at the absolute pressure where the temperature is measured.
Superheated steam can therefore cool (lose internal energy) by some amount, resulting in a lowering of its temperature without changing state (i.e., condensing) from a gas to a mixture of saturated vapor and liquid. If unsaturated steam (a mixture which contains both water vapor and liquid water droplets) is heated at constant pressure, its temperature will also remain constant as the vapor quality (think dryness, or percent saturated vapor) increases towards 100%, and becomes dry (i.e., no saturated liquid) saturated steam. Continued heat input will then "super" heat the dry saturated steam. This will occur if saturated steam contacts a surface with a higher temperature.
Superheated steam and liquid water cannot coexist under thermodynamic equilibrium, as any additional heat simply evaporates more water and the steam will become saturated steam. However, this restriction may be violated temporarily in dynamic (non-equilibrium) situations. To produce superheated steam in a power plant or for processes (such as drying paper) the saturated steam drawn from a boiler is passed through a separate heating device (a superheater) which transfers additional heat to the steam by contact or by radiation.
Superheated steam is not suitable for sterilization. [1] This is because the superheated steam is dry. Dry steam must reach much higher temperatures and the materials exposed for a longer time period to have the same effectiveness; or equal F0 kill value. Superheated steam is also not useful for heating; while it has more energy and can do more work than saturated steam, its heat content is much less useful. This is because superheated steam has the same heat transfer coefficient of air, making it an insulator - a poor conductor of heat. Saturated steam has a much higher wall heat transfer coefficient. [2]
Slightly superheated steam may be used for antimicrobial disinfection of biofilms on hard surfaces. [3]
Superheated steam's greatest value lies in its tremendous internal energy that can be used for kinetic reaction through mechanical expansion against turbine blades and reciprocating pistons, that produces rotary motion of a shaft. The value of superheated steam in these applications is its ability to release tremendous quantities of internal energy yet remain above the condensation temperature of water vapor; at the pressures at which reaction turbines and reciprocating piston engines operate.
Of prime importance in these applications is the fact that water vapor containing entrained liquid droplets is generally incompressible at those pressures. In a reciprocating engine or turbine, if steam doing work cools to a temperature at which liquid droplets form, then the water droplets entrained in the fluid flow will strike the mechanical parts with enough force to bend, crack or fracture them. [4] Superheating and pressure reduction through expansion ensures that the steam flow remains as a compressible gas throughout its passage through a turbine or an engine, preventing damage of the internal moving parts.
Saturated steam is steam that is in equilibrium with heated water at the same pressure, i.e., it has not been heated above the boiling point for its pressure. This is in contrast to superheated steam, in which the steam (vapor) has been separated from the water droplets then additional heat has been added.
These condensation droplets are a cause of damage to steam turbine blades, [5] the reason why such turbines rely on a supply of dry, superheated steam.
Dry steam is saturated steam that has been very slightly superheated. This is not sufficient to change its energy appreciably, but is a sufficient rise in temperature to avoid condensation problems, given the average loss in temperature across the steam supply circuit. Towards the end of the 19th century, when superheating was still a less-than-certain technology, such steam-drying gave the condensation-avoiding benefits of superheating without requiring the sophisticated boiler or lubrication techniques of full superheating. [6]
By contrast, water vapor that includes water droplets is described as wet steam. If wet steam is heated further, the droplets evaporate, and at a high enough temperature (which depends on the pressure) all of the water evaporates, the system is in vapor–liquid equilibrium, [7] and it becomes saturated steam.
Saturated steam is advantageous in heat transfer due to the high latent heat of vaporization. It is a very efficient mode of heat transfer. In layman's terms, saturated steam is at its dew point at the corresponding temperature and pressure. The typical latent heat of vaporization (or condensation) is 970 BTU/lb (2,256 kJ/kg) for saturated steam at atmospheric pressure. [8]
Superheated steam was widely used in main line steam locomotives. Saturated steam has three main disadvantages in a steam engine: it contains small droplets of water which have to be periodically drained from the cylinders; being precisely at the boiling point of water for the boiler pressure in use, it inevitably condenses to some extent in the steam pipes and cylinders outside the boiler, causing a disproportionate loss of steam volume as it does so; and it places a heavy demand on the boiler.
Superheating the steam dries it effectively, raises its temperature to a point where condensation is much less likely and increases its volume significantly. Added together, these factors increase the power and economy of the locomotive. The main disadvantages are the added complexity and cost of the superheater tubing and the adverse effect that the "dry" steam has on lubrication of moving components such as the steam valves. Shunting locomotives did not generally use superheating.
The normal arrangement involved taking steam after the regulator valve and passing it through long superheater tubes inside specially large firetubes of the boiler. The superheater tubes had a reverse ("torpedo") bend at the firebox end so that the steam had to pass the length of the boiler at least twice, picking up heat as it did so.
Other potential uses of superheated steam include: drying, cleaning, layering, reaction engineering, epoxy drying and film use where saturated to highly superheated steam is required at one atmospheric pressure or at high pressure. Ideal for steam drying, steam oxidation and chemical processing. Uses are in surface technologies, cleaning technologies, steam drying, catalysis, chemical reaction processing, surface drying technologies, curing technologies, energy systems and nanotechnologies.
The application of superheated steam for sanitation of dry food processing plant environment has been reported. [9]
Superheated steam is not usually used in a heat exchanger due to low heat transfer co-efficient. [10] In refining and hydrocarbon industries superheated steam is mainly used for stripping and cleaning purposes.
Steam has been used for soil steaming since the 1890s. Steam is induced into the soil which causes almost all organic material to deteriorate (the term "sterilization" is used, but it is not strictly correct since all micro-organism are not necessarily killed). Soil steaming is an effective alternative to many chemicals in agriculture, and is used widely by greenhouse growers. Wet steam is primarily used in this process, but if soil temperatures above the 212 °F (100 °C) boiling point of water are required, superheated steam must be used. [11]
Evaporation is a type of vaporization that occurs on the surface of a liquid as it changes into the gas phase. A high concentration of the evaporating substance in the surrounding gas significantly slows down evaporation, such as when humidity affects rate of evaporation of water. When the molecules of the liquid collide, they transfer energy to each other based on how they collide. When a molecule near the surface absorbs enough energy to overcome the vapor pressure, it will escape and enter the surrounding air as a gas. When evaporation occurs, the energy removed from the vaporized liquid will reduce the temperature of the liquid, resulting in evaporative cooling.
Water vapor, water vapour or aqueous vapor is the gaseous phase of water. It is one state of water within the hydrosphere. Water vapor can be produced from the evaporation or boiling of liquid water or from the sublimation of ice. Water vapor is transparent, like most constituents of the atmosphere. Under typical atmospheric conditions, water vapor is continuously generated by evaporation and removed by condensation. It is less dense than most of the other constituents of air and triggers convection currents that can lead to clouds and fog.
A boiler is a closed vessel in which fluid is heated. The fluid does not necessarily boil. The heated or vaporized fluid exits the boiler for use in various processes or heating applications, including water heating, central heating, boiler-based power generation, cooking, and sanitation.
Flash evaporation is the partial vapor that occurs when a saturated liquid stream undergoes a reduction in pressure by passing through a throttling valve or other throttling device. This process is one of the simplest unit operations. If the throttling valve or device is located at the entry into a pressure vessel so that the flash evaporation occurs within the vessel, then the vessel is often referred to as a flash drum.
A heat pipe is a heat-transfer device that employs phase transition to transfer heat between two solid interfaces.
The Rankine cycle is an idealized thermodynamic cycle describing the process by which certain heat engines, such as steam turbines or reciprocating steam engines, allow mechanical work to be extracted from a fluid as it moves between a heat source and heat sink. The Rankine cycle is named after William John Macquorn Rankine, a Scottish polymath professor at Glasgow University.
A high pressure watertube boiler is a type of boiler in which water circulates in tubes heated externally by fire. Fuel is burned inside the furnace, creating hot gas which boils water in the steam-generating tubes. In smaller boilers, additional generating tubes are separate in the furnace, while larger utility boilers rely on the water-filled tubes that make up the walls of the furnace to generate steam.
A steam explosion is an explosion caused by violent boiling or flashing of water or ice into steam, occurring when water or ice is either superheated, rapidly heated by fine hot debris produced within it, or heated by the interaction of molten metals. Steam explosions are instances of explosive boiling. Pressure vessels, such as pressurized water (nuclear) reactors, that operate above atmospheric pressure can also provide the conditions for a steam explosion. The water changes from a solid or liquid to a gas with extreme speed, increasing dramatically in volume. A steam explosion sprays steam and boiling-hot water and the hot medium that heated it in all directions, creating a danger of scalding and burning.
A superheater is a device used to convert saturated steam or wet steam into superheated steam or dry steam. Superheated steam is used in steam turbines for electricity generation, in some steam engines, and in processes such as steam reforming. There are three types of superheaters: radiant, convection, and separately fired. A superheater can vary in size from a few tens of feet to several hundred feet.
A thermal power station, also known as a thermal power plant, is a type of power station in which the heat energy generated from various fuel sources is converted to electrical energy. The heat from the source is converted into mechanical energy using a thermodynamic power cycle. The most common cycle involves a working fluid heated and boiled under high pressure in a pressure vessel to produce high-pressure steam. This high pressure-steam is then directed to a turbine, where it rotates the turbine's blades. The rotating turbine is mechanically connected to an electric generator which converts rotary motion into electricity. Fuels such as natural gas or oil can also be burnt directly in gas turbines, skipping the steam generation step. These plants can be of the open cycle or the more efficient combined cycle type.
An absorption refrigerator is a refrigerator that uses a heat source to provide the energy needed to drive the cooling process. Solar energy, burning a fossil fuel, waste heat from factories, and district heating systems are examples of heat sources that can be used. An absorption refrigerator uses two coolants: the first coolant performs evaporative cooling and then is absorbed into the second coolant; heat is needed to reset the two coolants to their initial states. Absorption refrigerators are commonly used in recreational vehicles (RVs), campers, and caravans because the heat required to power them can be provided by a propane fuel burner, by a low-voltage DC electric heater or by a mains-powered electric heater. Absorption refrigerators can also be used to air-condition buildings using the waste heat from a gas turbine or water heater in the building. Using waste heat from a gas turbine makes the turbine very efficient because it first produces electricity, then hot water, and finally, air-conditioning—trigeneration.
A steam–electric power station is a power station in which the electric generator is steam-driven: water is heated, evaporates, and spins a steam turbine which drives an electric generator. After it passes through the turbine, the steam is condensed in a condenser. The greatest variation in the design of steam–electric power plants is due to the different fuel sources.
Economizers, or economisers (UK), are mechanical devices intended to reduce energy consumption, or to perform useful function such as preheating a fluid. The term economizer is used for other purposes as well. Boiler, power plant, heating, refrigeration, ventilating, and air conditioning (HVAC) may all use economizers. In simple terms, an economizer is a heat exchanger.
Vapor-compression evaporation is the evaporation method by which a blower, compressor or jet ejector is used to compress, and thus, increase the pressure of the vapor produced. Since the pressure increase of the vapor also generates an increase in the condensation temperature, the same vapor can serve as the heating medium for its "mother" liquid or solution being concentrated, from which the vapor was generated to begin with. If no compression was provided, the vapor would be at the same temperature as the boiling liquid/solution, and no heat transfer could take place.
An evaporator is a type of heat exchanger device that facilitates evaporation by utilizing conductive and convective heat transfer, which provides the necessary thermal energy for phase transition from liquid to vapour. Within evaporators, a circulating liquid is exposed to an atmospheric or reduced pressure environment causing it to boil at a lower temperature compared to normal atmospheric boiling.
A steam drum is a standard feature of a water-tube boiler. It is a reservoir of water/steam at the top end of the water tubes. The drum stores the steam generated in the water tubes and acts as a phase-separator for the steam/water mixture. The difference in densities between hot and cold water helps in the accumulation of the "hotter"-water/and saturated-steam into the steam-drum.
In thermodynamics, vapor quality is the mass fraction in a saturated mixture that is vapor; in other words, saturated vapor has a "quality" of 100%, and saturated liquid has a "quality" of 0%. Vapor quality is an intensive property which can be used in conjunction with other independent intensive properties to specify the thermodynamic state of the working fluid of a thermodynamic system. It has no meaning for substances which are not saturated mixtures . Vapor quality is an important quantity during the adiabatic expansion step in various thermodynamic cycles. Working fluids can be classified by using the appearance of droplets in the vapor during the expansion step.
A boiler or steam generator is a device used to create steam by applying heat energy to water. Although the definitions are somewhat flexible, it can be said that older steam generators were commonly termed boilers and worked at low to medium pressure but, at pressures above this, it is more usual to speak of a steam generator.
Steam is water vapour, often mixed with air and/or an aerosol of liquid water droplets. This may occur due to evaporation or due to boiling, where heat is applied until water reaches the enthalpy of vaporization. Steam that is saturated or superheated is invisible; however, wet steam, a visible mist or aerosol of water droplets, is often referred to as "steam".
The Hygroscopic cycle is a thermodynamic cycle converting thermal energy into mechanical power by the means of a steam turbine. It is similar to the Rankine cycle using water as the motive fluid but with the novelty of introducing salts and their hygroscopic properties for the condensation. The salts are desorbed in the boiler or steam generator, where clean steam is released and superheated in order to be expanded and generate power through the steam turbine. Boiler blowdown with the concentrated hygroscopic compounds is used thermally to pre-heat the steam turbine condensate, and as reflux in the steam-absorber.