Terrestrial animal

Last updated
The goat is a terrestrial animal. Capra aegagrus hircus, Neuss (DE) -- 2023 -- 0027.jpg
The goat is a terrestrial animal.

Terrestrial animals are animals that live predominantly or entirely on land (e.g. cats, chickens, ants, most spiders), as compared with aquatic animals, which live predominantly or entirely in the water (e.g. fish, lobsters, octopuses), and semiaquatic animals, which rely on both aquatic and terrestrial habitats (e.g. platypus, most amphibians). Some groups of insects are terrestrial, such as ants, butterflies, earwigs, cockroaches, grasshoppers and many others, while other groups are partially aquatic, such as mosquitoes and dragonflies, which pass their larval stages in water.

Contents

Alternatively, terrestrial is used to describe animals that live on the ground, as opposed to arboreal animals that live in trees.

Ecological subgroups

The term "terrestrial" is typically applied to species that live primarily on or in the ground, in contrast to arboreal species, who live primarily in trees, even though the latter are actually a specialized subgroup of the terrestrial fauna.

There are other less common terms that apply to specific subgroups of terrestrial animals:

Taxonomy

Terrestrial invasion is one of the most important events in the history of life. [1] [2] [3] Terrestrial lineages evolved in several animal phyla, among which arthropods, vertebrates and mollusks are representatives of more successful groups of terrestrial animals.

Terrestrial animals do not form a unified clade; rather, they are a polyphyletic group that share only the fact that they live on land. The transition from an aquatic to terrestrial life by various groups of animals has occurred independently and successfully many times. [3] Most terrestrial lineages originated under a mild or tropical climate during the Paleozoic and Mesozoic, whereas few animals became fully terrestrial during the Cenozoic.

If internal parasites are excluded, free living species in terrestrial environments are represented by the following eleven phyla:

Roundworms, gastrotrichs, tardigrades, rotifers and some smaller species of arthropods and annelids are microscopic animals that require a film of water to live in, and are therefore considered semi-terrestrial. [4] Flatworms, ribbon worms, velvet worms and annelids all depend on more or less moist habitats. The three remaining phyla, arthropods, mollusks, and chordates, all contain species that have adapted totally to dry terrestrial environments, and which have no aquatic phase in their life cycles.

Difficulties

Animals do not fall neatly into terrestrial or aquatic classification but lie along a continuum: e.g., penguins spend much of their time under water. Pygoscelis papua -Nagasaki Penguin Aquarium -swimming underwater-8a.jpg
Animals do not fall neatly into terrestrial or aquatic classification but lie along a continuum: e.g., penguins spend much of their time under water.

Labeling an animal species "terrestrial" or "aquatic" is often obscure and becomes a matter of judgment. Many animals considered terrestrial have a life-cycle that is partly dependent on being in water. Penguins, seals, and walruses sleep on land and feed in the ocean, yet they are all considered terrestrial. Many insects, e.g. mosquitos, and all terrestrial crabs, as well as other clades, have an aquatic life cycle stage: their eggs need to be laid in and to hatch in water; after hatching, there is an early aquatic form, either a nymph or larva.

There are crab species that are completely aquatic, crab species that are amphibious, and crab species that are terrestrial. Fiddler crabs are called "semi-terrestrial" since they make burrows in the muddy substrate, to which they retreat during high tides. When the tide is out, fiddler crabs search the beach for food. The same is true in the mollusca. Many hundreds of gastropod genera and species live in intermediate situations, such as for example, Truncatella. Some gastropods with gills live on land, and others with a lung live in the water.

As well as the purely terrestrial and the purely aquatic animals, there are many borderline species. There are no universally accepted criteria for deciding how to label these species, thus some assignments are disputed.

Terrestrial panarthropods

Fossil evidence has shown that sea creatures, likely arthropods, first began to make forays onto land around 530 million years ago, in the Early Cambrian. There is little reason to believe, however, that animals first began living reliably[ clarification needed ] on land around that time. A more likely hypothesis is that these early arthropods' motivation for venturing onto dry land was to mate (as modern horseshoe crabs do) or to lay eggs out of the reach of predators. [5] Three groups of arthropods had independently adapted to land by the end of the Cambrian: myriapods, hexapods and arachnids. [6] By the late Ordovician, they may have fully terrestrialized. There are other groups of arthropods, all from malacostracan crustaceans, which independently became terrestrial at a later date: woodlice, sandhoppers, and terrestrial crabs. Additionally, the sister panarthropodan groups Onychophora (velvet worms) are also terrestrial, while the Eutardigrada are also adapted for land to some degree; both groups probably becoming so during the Early Devonian. [7] Among arthropods, many microscopic crustacean groups like copepods and amphipods and seed shrimp can go dormant when dry and live in transient bodies of water.[ citation needed ]

Vertebrate terrestrialization

By approximately 375 million years ago [3] the bony fish best adapted to life in shallow coastal/swampy waters (such as Tiktaalik roseae). Thanks to relatively strong, muscular limbs (which were likely weight-bearing, thus making them a preferable alternative to traditional fins in extremely shallow water), [8] and lungs which existed in conjunction with gills, Tiktaalik and animals like it were able to establish a strong foothold on land by the end of the Devonian period. In the Carboniferous, tetrapods (losing their gills) became fully terrestrialized, allowing their expansion into most terrestrial niches, though later on some will return to being aquatic and conquer the air also.

Terrestrial gastropods

Gastropod mollusks are one of the most successful animals that have diversified in the fully terrestrial habitat. [9] They have evolved terrestrial taxa in more than nine lineages. [9] They are commonly referred to as land snails and slugs.

Terrestrial invasion of gastropod mollusks has occurred in Neritopsina, Cyclophoroidea, Littorinoidea, Rissooidea, Ellobioidea, Onchidioidea, Veronicelloidea, Succineoidea, and Stylommatophora, and in particular, each of Neritopsina, Rissooidea and Ellobioidea has likely achieved land invasion more than once. [9]

Most terrestrialization events have occurred during the Paleozoic or Mesozoic. [9] Gastropods are especially unique due to several fully terrestrial and epifaunal lineages that evolved during the Cenozoic. [9] Some members of rissooidean families Truncatellidae, Assimineidae, and Pomatiopsidae are considered to have colonized to land during the Cenozoic. [9] Most truncatellid and assimineid snails amphibiously live in intertidal and supratidal zones from brackish water to pelagic areas. [9] Terrestrial lineages likely evolved from such ancestors. [9] The rissooidean gastropod family Pomatiopsidae is one of the few groups that have evolved fully terrestrial taxa during the late Cenozoic in the Japanese Archipelago only. [9] Shifts from aquatic to terrestrial life occurred at least twice within two Japanese endemic lineages in Japanese Pomatiopsidae and it started in the Late Miocene. [9]

About one-third of gastropod species are terrestrial. [10] In terrestrial habitats they are subjected to daily and seasonal variation in temperature and water availability. [10] Their success in colonizing different habitats is due to physiological, behavioral, and morphological adaptations to water availability, as well as ionic and thermal balance. [10] They are adapted to most of the habitats on Earth. [10] The shell of a snail is constructed of calcium carbonate, but even in acidic soils one can find various species of shell-less slugs. [10] Land-snails, such as Xerocrassa seetzeni and Sphincterochila boissieri, also live in deserts, where they must contend with heat and aridity. [10] Terrestrial gastropods are primarily herbivores and only a few groups are carnivorous. [11] Carnivorous gastropods usually feed on other gastropod species or on weak individuals of the same species; some feed on insect larvae or earthworms. [11]

Semi-terrestrial animals

Semi-terrestrial animals are macroscopic animals that rely on very moist environments to thrive, they may be considered a transitional point between true terrestrial animals and aquatic animals. Among vertebrates, amphibians have this characteristic relying on a moist environment and breathing through their moist skin while reproducing in water.

Many other animal groups solely have terrestrial animals that live like this: land planarians, land ribbon worms, roundworms (nematodes), and land annelids (clitellates) who are very primitive and breathe through skin.

Clitellates or terrestrial annelids demonstrate many unique terrestrial adaptations especially in their methods of reproduction, they tend towards being simpler than their marine relatives, the bristleworms, lacking many of the complex appendages the latter have.

Velvet worms are prone to desiccation not due to breathing through their skin but due to their spiracles being inefficient at protecting from desiccation, like clitellates they demonstrate extensive terrestrial adaptations and differences from their marine relatives including live birth.

Geoplankton

Many animals live in terrestrial environments by thriving in transient often microscopic bodies of water and moisture, these include rotifers and gastrotrichs which lay resilient eggs capable of surviving years in dry environments, and some of which can go dormant themselves. Nematodes are usually microscopic with this lifestyle. Although eutardigrades only have lifespans of a few months, they famously can enter suspended animation during dry or hostile conditions and survive for decades, which allows them to be ubiquitous in terrestrial environments despite needing water to grow and reproduce. Many microscopic crustacean groups like copepods and amphipods and seed shrimps are known to go dormant when dry and live in transient bodies of water too. [4]

See also

Further reading

Related Research Articles

<span class="mw-page-title-main">Invertebrate</span> Animals without a vertebral column

Invertebrates is an umbrella term describing animals that neither develop nor retain a vertebral column, which evolved from the notochord. It is a paraphyletic grouping including all animals excluding the chordate subphylum Vertebrata, i.e. vertebrates. Well-known phyla of invertebrates include arthropods, mollusks, annelids, echinoderms, flatworms, cnidarians, and sponges.

<span class="mw-page-title-main">Onychophora</span> Phylum of invertebrate animals

Onychophora, commonly known as velvet worms or more ambiguously as peripatus, is a phylum of elongate, soft-bodied, many-legged animals. In appearance they have variously been compared to worms with legs, caterpillars, and slugs. They prey upon other invertebrates, which they catch by ejecting an adhesive slime. Approximately 200 species of velvet worms have been described, although the true number of species is likely greater. The two extant families of velvet worms are Peripatidae and Peripatopsidae. They show a peculiar distribution, with the peripatids being predominantly equatorial and tropical, while the peripatopsids are all found south of the equator. It is the only phylum within Animalia that is wholly endemic to terrestrial environments, at least among extant members. Velvet worms are generally considered close relatives of the Arthropoda and Tardigrada, with which they form the proposed taxon Panarthropoda. This makes them of palaeontological interest, as they can help reconstruct the ancestral arthropod. Only two fossil species are confidently assigned as onychophorans: Antennipatus from the Late Carboniferous, and Cretoperipatus from the Late Cretaceous, the latter belonging to Peripatidae. In modern zoology, they are particularly renowned for their curious mating behaviours and the bearing of live young in some species.

<span class="mw-page-title-main">Nemertea</span> Phylum of invertebrates, ribbon worms

Nemertea is a phylum of animals also known as ribbon worms or proboscis worms, consisting of about 1300 known species. Most ribbon worms are very slim, usually only a few millimeters wide, although a few have relatively short but wide bodies. Many have patterns of yellow, orange, red and green coloration. The foregut, stomach and intestine run a little below the midline of the body, the anus is at the tip of the tail, and the mouth is under the front. A little above the gut is the rhynchocoel, a cavity which mostly runs above the midline and ends a little short of the rear of the body. All species have a proboscis which lies in the rhynchocoel when inactive but everts to emerge just above the mouth to capture the animal's prey with venom. A highly extensible muscle in the back of the rhynchocoel pulls the proboscis in when an attack ends. A few species with stubby bodies filter feed and have suckers at the front and back ends, with which they attach to a host.

<span class="mw-page-title-main">Snail</span> Shelled gastropod

A snail is a shelled gastropod. The name is most often applied to land snails, terrestrial pulmonate gastropod molluscs. However, the common name snail is also used for most of the members of the molluscan class Gastropoda that have a coiled shell that is large enough for the animal to retract completely into. When the word "snail" is used in this most general sense, it includes not just land snails but also numerous species of sea snails and freshwater snails. Gastropods that naturally lack a shell, or have only an internal shell, are mostly called slugs, and land snails that have only a very small shell are often called semi-slugs.

<span class="mw-page-title-main">Seashell</span> Hard, protective outer layers created by an animal that lives in the sea

A seashell or sea shell, also known simply as a shell, is a hard, protective outer layer usually created by an animal or organism that lives in the sea. Most seashells are made by mollusks, such as snails, clams, and oysters to protect their soft insides. Empty seashells are often found washed up on beaches by beachcombers. The shells are empty because the animal has died and the soft parts have decomposed or been eaten by another organism.

<span class="mw-page-title-main">Gastropoda</span> Class of molluscs

Gastropods, commonly known as slugs and snails, belong to a large taxonomic class of invertebrates within the phylum Mollusca called Gastropoda.

<span class="mw-page-title-main">Hermit crab</span> Superfamily of crustaceans (Paguroidea)

Hermit crabs are anomuran decapod crustaceans of the superfamily Paguroidea that have adapted to occupy empty scavenged mollusc shells to protect their fragile exoskeletons. There are over 800 species of hermit crab, most of which possess an asymmetric abdomen concealed by a snug-fitting shell. Hermit crabs' soft (non-calcified) abdominal exoskeleton means they must occupy shelter produced by other organisms or risk being defenseless.

<span class="mw-page-title-main">Aquatic animal</span> Animal that lives in water for most or all of its lifetime

An aquatic animal is any animal, whether vertebrate or invertebrate, that lives in bodies of water for all or most of its lifetime. Aquatic animals generally conduct gas exchange in water by extracting dissolved oxygen via specialised respiratory organs called gills, through the skin or across enteral mucosae, although some are evolved from terrestrial ancestors that re-adapted to aquatic environments, in which case they actually use lungs to breathe air and are essentially holding their breath when living in water. Some species of gastropod mollusc, such as the eastern emerald sea slug, are even capable of kleptoplastic photosynthesis via endosymbiosis with ingested yellow-green algae.

<span class="mw-page-title-main">Marine life</span> Organisms that live in salt water

Marine life, sea life or ocean life is the collective ecological communities that encompass all aquatic animals, plants, algae, fungi, protists, single-celled microorganisms and associated viruses living in the saline water of marine habitats, either the sea water of marginal seas and oceans, or the brackish water of coastal wetlands, lagoons, estuaries and inland seas. As of 2023, more than 242,000 marine species have been documented, and perhaps two million marine species are yet to be documented. An average of 2,332 new species per year are being described. Marine life is studied scientifically in both marine biology and in biological oceanography.

<span class="mw-page-title-main">Clitellata</span> Class of annelid worms

The Clitellata are a class of annelid worms, characterized by having a clitellum – the 'collar' that forms a reproductive cocoon during part of their life cycles. The clitellates comprise around 8,000 species. Unlike the class of Polychaeta, they do not have parapodia and their heads are less developed.

<span class="mw-page-title-main">Intertidal ecology</span> Study of ecosystems, where organisms live between the low and high tide lines

Intertidal ecology is the study of intertidal ecosystems, where organisms live between the low and high tide lines. At low tide, the intertidal is exposed whereas at high tide, the intertidal is underwater. Intertidal ecologists therefore study the interactions between intertidal organisms and their environment, as well as between different species of intertidal organisms within a particular intertidal community. The most important environmental and species interactions may vary based on the type of intertidal community being studied, the broadest of classifications being based on substrates—rocky shore and soft bottom communities.

<span class="mw-page-title-main">Marine invertebrates</span> Marine animals without a vertebral column

Marine invertebrates are the invertebrates that live in marine habitats. Invertebrate is a blanket term that includes all animals apart from the vertebrate members of the chordate phylum. Invertebrates lack a vertebral column, and some have evolved a shell or a hard exoskeleton. As on land and in the air, marine invertebrates have a large variety of body plans, and have been categorised into over 30 phyla. They make up most of the macroscopic life in the oceans.

<span class="mw-page-title-main">Worm</span> Limbless invertebrate animal

Worms are many different distantly related bilateral animals that typically have a long cylindrical tube-like body, no limbs, and usually no eyes.

<span class="mw-page-title-main">Arthropod</span> Phylum of invertebrates with jointed exoskeletons

Arthropods are invertebrates in the phylum Arthropoda. They possess an exoskeleton with a cuticle made of chitin, often mineralised with calcium carbonate, a body with differentiated (metameric) segments, and paired jointed appendages. In order to keep growing, they must go through stages of moulting, a process by which they shed their exoskeleton to reveal a new one. They form an extremely diverse group of up to ten million species.

<span class="mw-page-title-main">Pomatiopsidae</span> Family of gastropods

Pomatiopsidae is a family of small, mainly freshwater snails, that have gills and an operculum, aquatic gastropod mollusks in the superfamily Truncatelloidea.

<span class="mw-page-title-main">Coconut crab</span> Species of crustacean

The coconut crab is a terrestrial species of giant hermit crab, and is also known as the robber crab or palm thief. It is the largest terrestrial arthropod known, with a weight of up to 4.1 kg (9 lb). The distance from the tip of one leg to the tip of another can be as wide as 1 m. It is found on islands across the Indian and Pacific Oceans, as far east as the Gambier Islands, Pitcairn Islands and Caroline Island and as far west as Zanzibar. While its range broadly shadows the distribution of the coconut palm, the coconut crab has been extirpated from most areas with a significant human population such as mainland Australia and Madagascar.

<i>Blanfordia</i> Genus of gastropods

Blanfordia is a genus of terrestrial gastropod mollusks in the family Pomatiopsidae. They are land snails which have an operculum.

<i>Fukuia</i> Genus of gastropods

Fukuia is a genus of amphibious freshwater snails and land snails with an operculum, gastropod mollusks in the family Pomatiopsidae.

<span class="mw-page-title-main">Annelid</span> Phylum of segmented worms

The annelids, also known as the segmented worms, comprise a large phylum called Annelida. The phylum contains over 22,000 extant species, including ragworms, earthworms, and leeches. The species exist in and have adapted to various ecologies – some in marine environments as distinct as tidal zones and hydrothermal vents, others in fresh water, and yet others in moist terrestrial environments.

<span class="mw-page-title-main">Semiaquatic</span> Spends part of their time in water, or grows partially submerged in water

In biology, being semi-aquatic refers to various macroorganisms that live regularly in both aquatic and terrestrial environments. When referring to animals, the term describes those that actively spend part of their daily time in water, or land animals that have spent at least one life stages in aquatic environments. When referring to plants, the term describes land plants whose roots have adapted well to tolerate regular, prolonged submersion in water, as well as emergent and (occasionally) floating-leaved aquatic plants that are only partially immersed in water.

References

This article incorporates CC-BY-2.0 text from the reference [9] and CC-BY-2.5 text from the reference [10] and CC-BY-3.0 text from the reference [11]

  1. Shear WA: The early development of terrestrial ecosystems. Nature 1991, 351:283-289.
  2. Vermeij GJ, Dudley R, Why are there so few evolutionary transitions between aquatic and terrestrial ecosystems? Biol J Linn Soc, 2000, 70:541-554.
  3. 1 2 3 Garwood, Russell J.; Edgecombe, Gregory D. (September 2011). "Early Terrestrial Animals, Evolution, and Uncertainty". Evolution: Education and Outreach. 4 (3). New York: Springer Science+Business Media: 489–501. doi: 10.1007/s12052-011-0357-y .
  4. 1 2 The Terrestrial Plankton | NZETC
  5. MacNaughton, R. B et al. First steps on land: Arthropod trackways in Cambrian-Ordovician eolian sandstone, southeastern Ontario, Canada. Geology, 30, 391 – 394, (2002).
  6. Lozano-Fernandez, J., Carton, R., Tanner, A. R., Puttick, M. N., Blaxter, M., Vinther, J., Olesen, J., Giribet, G., Edgecombe, G. D., & Pisani, D. (2016). A molecular palaeobiological exploration of arthropod terrestrialization. Philosophical transactions of the Royal Society of London. Series B, Biological sciences, 371(1699), 20150133. https://doi.org/10.1098/rstb.2015.0133
  7. Rota-Stabelli, Omar; Daley, Allison C.; Pisani, Davide. "Molecular Timetrees Reveal a Cambrian Colonization of Land and a New Scenario for Ecdysozoan Evolution" Current Biology, Volume 23, Issue 5 (31 January 2013)| https://doi.org/10.1016/j.cub.2013.01.026
  8. Hohn-Schulte, Bianca, Holger Preuschoft, Ulrich Witzel, and Claudia Distler-Hoffman. "Biomechanics and Functional Preconditions for Terrestrial Lifestyle in Basal Tetrapods, with Special Consideration of Tiktaalik Roseae." Historical Biology 25.2 (2013): 167–81. Web.
  9. 1 2 3 4 5 6 7 8 9 10 11 Kameda Y. & Kato M. (2011). "Terrestrial invasion of pomatiopsid gastropods in the heavy-snow region of the Japanese Archipelago". BMC Evolutionary Biology 11: 118. doi : 10.1186/1471-2148-11-118.
  10. 1 2 3 4 5 6 7 Raz S., Schwartz N. P., Mienis H. K., Nevo E. & Graham J. H. (2012). "Fluctuating Helical Asymmetry and Morphology of Snails (Gastropoda) in Divergent Microhabitats at ‘Evolution Canyons I and II,’ Israel". PLoS ONE 7(7): e41840. doi : 10.1371/journal.pone.0041840.
  11. 1 2 3 Siriboon, T.; Sutcharit, C.; Naggs, F.; Panha, S. (2013). "Three new species of the carnivorous snail genus Perrottetia Kobelt, 1905 from Thailand (Pulmonata, Streptaxidae)". ZooKeys (287): 41–57. Bibcode:2013ZooK..287...41S. doi: 10.3897/zookeys.287.4572 . PMC   3677355 . PMID   23794847.