Sea pen

Last updated

Sea pen
Temporal range: Cambrian–Recent
Haeckel Pennatulida.jpg
"Pennatulida" from Ernst Haeckel's Kunstformen der Natur , 1904
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Eukaryota
Kingdom: Animalia
Phylum: Cnidaria
Class: Octocorallia
Order: Pennatulacea
Verrill, 1865
Family

Pennatulidae

Sea pens are colonial marine cnidarians belonging to the order Pennatulacea. The order Pennatulacea, commonly known as sea pens, are colony-forming benthos belonging within subclass Octocorallia (Anthozoa, Cnidaria). Sea pens are found worldwide from shallow to deep waters, and they are important components in sandy and muddy environments. Thus far, there has been only one molecular study focusing on the phylogenetic relationships within the order Pennatulacea, which mainly treated deep-sea species, and thus information on shallow water species is still lacking. [1] There are 14  families within the order and 35 extant genera; it is estimated that of 450 described species, around 200 are valid. [2] Sea pens have a cosmopolitan distribution, being found in tropical and temperate waters worldwide, as well as from the intertidal to depths of more than 6100 m. [2] Sea pens are grouped with the octocorals, together with sea whips ( gorgonians ).

Contents

Although the group is named for its supposed resemblance to antique quill pens, only sea pen species belonging to the suborder Subselliflorae live up to the comparison. Those belonging to the much larger suborder Sessiliflorae lack feathery structures and grow in club-like or radiating forms. The latter suborder includes what are commonly known as sea pansies.

The earliest accepted fossils are known from the Cambrian-aged Burgess Shale ( Thaumaptilon ). Similar fossils from the Ediacaranmay show the dawn of sea pens. [3] Precisely what these early fossils are, however, is not decided. [4]

Taxonomy

The order Pennatulacea consists of the following families: [5]

Biology

Due to the geographic distribution, a result of inflating themselves with seawater which causes them to get carried by the currents, there is genetic variation within the different species of sea pen. [ clarification needed ] There are many populations of sea pens found in mainly Indian waters. It is their polyps that are affected genetically, as they have dispersed within the different waters and islands, and how they use their polyps (tentacles) to protect themselves and other species. [7]

Uprooted sea pen with the bulbous peduncle in view Sea pen uprooted.jpg
Uprooted sea pen with the bulbous peduncle in view
Pierre's armina feeding on purple sea pen Pierre's armina feeding on purple sea pen DSC09784.jpg
Pierre's armina feeding on purple sea pen
Sea pen at Vancouver Aquarium Sea pen2.jpg
Sea pen at Vancouver Aquarium

As octocorals, sea pens are colonial animals with multiple polyps (which look somewhat like miniature sea anemones), each with eight tentacles. Unlike other octocorals, however, a sea pen's polyps are specialized to specific functions: a single polyp develops into a rigid, erect stalk (the rachis) and loses its tentacles, forming a bulbous "root" or peduncle at its base. [8] The other polyps branch out from this central stalk, forming water intake structures (siphonozooids), feeding structures (autozooids) with nematocysts, and reproductive structures. The entire colony is fortified by calcium carbonate in the form of spicules and a central axial rod.

Using their root-like peduncles to anchor themselves in sandy or muddy substrate, the exposed portion of sea pens may rise up to 2 metres (6.6 ft) in some species, such as the tall sea pen ( Funiculina quadrangularis ). Sea pens are sometimes brightly coloured; the orange sea pen (Ptilosarcus gurneyi) is a notable example. Rarely found above depths of 10 metres (33 ft), sea pens prefer deeper waters where turbulence is less likely to uproot them. Some species may inhabit depths of 2,000 metres (6,600 ft) or more.

While generally sessile animals, sea pens are able to relocate and re-anchor themselves if need be. [8] They position themselves favourably in the path of currents, ensuring a steady flow of plankton, the sea pens' chief source of food. Their primary predators are nudibranchs and sea stars, some of which feed exclusively on sea pens. The sea pens' ability to be clumped together and spatially unpredictable hinders sea stars' predation abilities. [9] When touched, some sea pens emit a bright greenish light; this is known as bioluminescence. They may also force water out of their bodies for defence, rapidly deflating and retreating into their peduncle.

Like other anthozoans, sea pens reproduce by coordinating a release of sperm and eggs into the water column; this may occur seasonally or throughout the year. Fertilized eggs develop into larvae called planulae which drift freely for about a week before settling on the substrate. Mature sea pens provide shelter for other animals, such as juvenile fish. Analysis of rachis growth rings indicates sea pens may live for 100 years or more, if the rings are indeed annual in nature.

Some sea pens exhibit glide reflection symmetry, [10] rare among extant animals.

Aquarium trade

Sea pens are sometimes sold in the aquarium trade. However, they are generally hard to care for because they need a very deep substrate and have special food requirements.

Related Research Articles

<span class="mw-page-title-main">Cnidaria</span> Aquatic animal phylum having cnydocytes

Cnidaria, is a phylum under kingdom Animalia containing over 11,000 species of aquatic animals found both in freshwater and marine environments, including jellyfish, hydroids, sea anemones, corals and some of the smallest marine parasites. Their distinguishing features are a decentralized nervous system distributed throughout a gelatinous body and the presence of cnidocytes or cnidoblasts, specialized cells with ejectable flagella used mainly for envenomation and capturing prey. Their bodies consist of mesoglea, a non-living, jelly-like substance, sandwiched between two layers of epithelium that are mostly one cell thick. Cnidarians are also some of the only animals that can reproduce both sexually and asexually.

<span class="mw-page-title-main">Anthozoa</span> Class of cnidarians without a medusa stage

Anthozoa is a class of marine invertebrates which includes the sea anemones, stony corals and soft corals. Adult anthozoans are almost all attached to the seabed, while their larvae can disperse as part of the plankton. The basic unit of the adult is the polyp; this consists of a cylindrical column topped by a disc with a central mouth surrounded by tentacles. Sea anemones are mostly solitary, but the majority of corals are colonial, being formed by the budding of new polyps from an original, founding individual. Colonies are strengthened by calcium carbonate and other materials and take various massive, plate-like, bushy or leafy forms.

<span class="mw-page-title-main">Sea pansy</span> Species of coral

The sea pansy, Renilla reniformis, is a species of soft coral in the family Renillidae. It is native to warm continental shelf waters of the Western Hemisphere. It is frequently found washed ashore on North East Florida beaches following northeasterly winds or rough surf conditions. It also can often be found living intertidally completely buried in the sand. Its predator is the striped sea slug, Armina tigrina.

<span class="mw-page-title-main">Staurozoa</span> Class of jellyfishes

Staurozoa is a class of Medusozoa, jellyfishes and hydrozoans. It has one extant order: Stauromedusae with a total of 50 known species. A fossil group called Conulariida has been proposed as a second order, although this is highly speculative. The extinct order is largely unknown and described as a possibly cnidarian clade of marine life with shell-like structures, the Conulariida. Staurozoans are small animals that live in marine environments, usually attached to seaweeds, rocks, or gravel. They have a large antitropical distribution, a majority found in boreal or polar, near-shore, and shallow waters. Few staurozoans are found in warmer tropical and subtropical water environments of the Atlantic, Indian, and Pacific Ocean basins, but most are known from the Northern Hemisphere. Over the years the number of discovered species has increased, with an estimated 50 species currently recognized. Information on Staurozoa is sparse, and it is one of the least studied groups within Cnidaria. While often neglected, correctly recognizing the characteristics of this class is crucial for understanding cnidarian evolution.

<span class="mw-page-title-main">Alcyonacea</span> Order of octocorals that do not produce massive calcium carbonate skeletons

Alcyonacea are an order of sessile colonial cnidarians that are found throughout the oceans of the world, especially in the deep sea, polar waters, tropics and subtropics. Whilst not in a strict taxonomic sense, Alcyonacea are commonly known as "soft corals" (Octocorallia) that are quite different from "true" corals (Scleractinia). The term “soft coral” generally applies to organisms in the two orders Pennatulacea and Alcyonacea with their polyps embedded within a fleshy mass of coenenchymal tissue. Consequently, the term “gorgonian coral” is commonly handed to multiple species in the order Alcyonacea that produce a mineralized skeletal axis composed of calcite and the proteinaceous material gorgonin only and corresponds to only one of several families within the formally accepted taxon Gorgoniidae (Scleractinia). These can be found in order Malacalcyonacea (taxonomic synonyms of include : Alcyoniina, Holaxonia, Protoalcyonaria, Scleraxonia, and Stolonifera. They are sessile colonial cnidarians that are found throughout the oceans of the world, especially in the deep sea, polar waters, tropics and subtropics. Common names for subsets of this order are sea fans and sea whips; others are similar to the sea pens of related order Pennatulacea. Individual tiny polyps form colonies that are normally erect, flattened, branching, and reminiscent of a fan. Others may be whiplike, bushy, or even encrusting. A colony can be several feet high and across, but only a few inches thick. They may be brightly coloured, often purple, red, or yellow. Photosynthetic gorgonians can be successfully kept in captive aquaria.

<span class="mw-page-title-main">Octocorallia</span> Class of Anthozoa with 8-fold symmetry

Octocorallia is a class of Anthozoa comprising around 3,000 species of water-based organisms formed of colonial polyps with 8-fold symmetry. It includes the blue coral, soft corals, sea pens, and gorgonians within three orders: Alcyonacea, Helioporacea, and Pennatulacea. These organisms have an internal skeleton secreted by mesoglea and polyps with eight tentacles and eight mesentaries. As with all Cnidarians these organisms have a complex life cycle including a motile phase when they are considered plankton and later characteristic sessile phase.

<span class="mw-page-title-main">Deep-water coral</span> Marine invertebrates

The habitat of deep-water corals, also known as cold-water corals, extends to deeper, darker parts of the oceans than tropical corals, ranging from near the surface to the abyss, beyond 2,000 metres (6,600 ft) where water temperatures may be as cold as 4 °C (39 °F). Deep-water corals belong to the Phylum Cnidaria and are most often stony corals, but also include black and thorny corals and soft corals including the Gorgonians. Like tropical corals, they provide habitat to other species, but deep-water corals do not require zooxanthellae to survive.

<span class="mw-page-title-main">Sea anemone</span> Marine animals of the order Actiniaria

Sea anemones are a group of predatory marine invertebrates constituting the order Actiniaria. Because of their colourful appearance, they are named after the Anemone, a terrestrial flowering plant. Sea anemones are classified in the phylum Cnidaria, class Anthozoa, subclass Hexacorallia. As cnidarians, sea anemones are related to corals, jellyfish, tube-dwelling anemones, and Hydra. Unlike jellyfish, sea anemones do not have a medusa stage in their life cycle.

<i>Leptogorgia virgulata</i> Species of coral

Leptogorgia virgulata, commonly known as the sea whip or colorful sea whip, is a species of soft coral in the family Gorgoniidae.

<i>Primnoa</i> Genus of corals

Primnoa(Lamororux, 1812) also known as red tree coral, is a genus of soft corals and the type genus of the family Primnoidae (Milne Edwards, 1857). They are sessile, benthic cnidarians that can be found in the North Pacific, North Atlantic, and Subantarctic South Pacific, and its members often play a vital ecological role as keystone species within their environment as a habitat and refuge for the megafauna that also inhabit those regions. This, in combination with their slow growth, makes the increasing disturbance to their habitats caused by fishing activities particularly impactful and difficult to recover from.

<i>Plexaurella nutans</i> Species of coral

Plexaurella nutans, the giant slit-pore sea rod, is a tall species of soft coral in the family Plexauridae. It is a relatively uncommon species and is found in shallow seas in the Caribbean region.

<span class="mw-page-title-main">Echinoptilidae</span> Family of corals

Echinoptilidae is a family of sea pens, a member of the subclass Octocorallia in the phylum Cnidaria.

<span class="mw-page-title-main">Virgulariidae</span> Family of corals

Virgulariidae is a family of sea pens, a member of the subclass Octocorallia in the phylum Cnidaria.

<i>Paramuricea clavata</i> Species of coral

Paramuricea clavata, the violescent sea-whip, is a species of colonial soft coral in the family Plexauridae. It is found in shallow seas of the north-eastern Atlantic Ocean and the north-western Mediterranean Sea as well as Ionian Sea. This species was first described by the French naturalist Antoine Risso in 1826.

Taiaroa is a genus of deep-water, solitary marine octocorals in the family Taiaroidae. Taiaroa is monotypic in the family Taiaroidae and contains a single species, Taiaroa tauhou. The species was first described by the marine zoologists Frederick M. Bayer and Katherine Margaret Muzik in 1976. The scientific name derives from "Taiaroa", the submarine canyon off New Zealand in which the first specimens were found and "tauhou", the Maori word for "strange".

Pseudoplexaura porosa, commonly known as the porous sea rod or the porous false plexaura, is a species of gorgonian-type colonial octocoral in the family Plexauridae. It is native to the Caribbean Sea and the Gulf of Mexico.

<i>Ptilosarcus gurneyi</i> Species of coral

Ptilosarcus gurneyi, the orange sea pen or fleshy sea pen, is a species of sea pen in the family Pennatulidae. It is native to the northeastern Pacific Ocean where it lives in deep water anchored by its base in sand or mud. It has received its common name because of its resemblance to a quill in a bottle of ink.

Swiftia comauensis species of gorgonian-type octocoral in the family Plexauridae, only found in the Comau fiords of Huinay in the Hualaihué province of the region of Los Lagos, Chile.

The slender sea pen is a species of sea pen in the family Virgulariidae, occurring throughout the Mediterranean and Western Europe, with some colonies being found on islands in the Mid-Atlantic.

<i>Briareum asbestinum</i> Species of coral

Briareum asbestinum, commonly known as the corky sea finger, is a species of a soft coral in the family Briareidae. It inhabits coral reefs and rocky bottoms in the Caribbean, Bahamas, and Florida, often growing to 30 cm at depths of one to 40 metres.

References

  1. Kushida, Yuka (2019-02-05). "Molecular phylogeny and diversity of sea pens (Cnidaria: Octocorallia: Pennatulacea) with a focus on shallow water species of the northwestern Pacific Ocean" .{{cite journal}}: Cite journal requires |journal= (help)
  2. 1 2 Williams, Gary C. (2011-07-29). "The Global Diversity of Sea Pens (Cnidaria: Octocorallia: Pennatulacea)". PLoS ONE . 6 (7): e22747. Bibcode:2011PLoSO...622747W. doi: 10.1371/journal.pone.0022747 . PMC   3146507 . PMID   21829500.
  3. Williams, Gary C. "Aspects of the Evolutionary Biology of Pennatulacean Octocorals". Department of Invertebrate Zoology and Geology. California Academy of Sciences. Retrieved 2023-01-27.
  4. Antcliffe, J.B.; Brasier, M.D. (2008). "Charnia at 50: Developmental Models for Ediacaran Fronds". Palaeontology. 51 (1): 11–26. doi: 10.1111/j.1475-4983.2007.00738.x . S2CID   83486435.
  5. "Pennatulacea". World Register of Marine Species . Retrieved 2018-04-03.
  6. López-González, Pablo J.; Drewery, Jim (23 February 2022). "When distant relatives look too alike: a new family, two new genera and a new species of deep-sea". Invertebrate Systematics. 36 (3): 199–225. doi:10.1071/IS21040. S2CID   248243502.
  7. De Clippele, L. H.; Buhl-Mortensen, P.; Buhl-Mortensen, L. (15 August 2015). "Fauna associated with cold water gorgonians and sea pens". Continental Shelf Research. 105: 67–78. doi:10.1016/j.csr.2015.06.007.
  8. 1 2 Barnes, Robert D. (1982). Invertebrate Zoology. Philadelphia, PA: Holt-Saunders International. pp. 168–169. ISBN   0-03-056747-5.
  9. Birkeland, Charles (February 1974). "Interactions between a Sea Pen and seven of its predators". Ecological Monographs. 44 (2): 211–232. doi:10.2307/1942312. JSTOR   1942312.
  10. Zubi, Teresa (2016-01-02). "Octocorals (Stoloniferans, soft corals, sea fans, gorgonians, sea pens) - Starfish Photos - Achtstrahlige Korallen (Röhrenkorallen, Weichkorallen, Hornkoralllen, Seefedern, Fächerkorallen)". starfish.ch. Retrieved 2016-09-08.