Polyp (zoology)

Last updated
Gorgonian polyps in a reef aquarium Polypen einer Gorgonie.jpg
Gorgonian polyps in a reef aquarium

A polyp in zoology is one of two forms found in the phylum Cnidaria, the other being the medusa. Polyps are roughly cylindrical in shape and elongated at the axis of the vase-shaped body. In solitary polyps, the aboral (opposite to oral) end is attached to the substrate by means of a disc-like holdfast called a pedal disc, while in colonies of polyps it is connected to other polyps, either directly or indirectly. The oral end contains the mouth, and is surrounded by a circlet of tentacles.

Contents

Classes

In the class Anthozoa, comprising the sea anemones and corals, the individual is always a polyp; in the class Hydrozoa, however, the individual may be either a polyp or a medusa, [1] with most species undergoing a life cycle with both a polyp stage and a medusa stage. In class Scyphozoa, the medusa stage is dominant, and the polyp stage may or may not be present, depending on the family. In those scyphozoans that have the larval planula metamorphose into a polyp, the polyp, also called a "scyphistoma," grows until it develops a stack of plate-like medusae that pinch off and swim away in a process known as strobilation. Once strobilation is complete, the polyp may die, or regenerate itself to repeat the process again later. With Cubozoans, the planula settles onto a suitable surface, and develops into a polyp. The cubozoan polyp then eventually metamorphoses directly into a medusa.

Anatomy

Anatomy of a coral polyp Coral polyp.jpg
Anatomy of a coral polyp

The body of the polyp may be roughly compared in a structure to a sac, the wall of which is composed of two layers of cells. The outer layer is known technically as the ectoderm, the inner layer as the endoderm (or gastroderm). Between ectoderm and endoderm is a supporting layer of structureless gelatinous substance termed mesoglea, secreted by the cell layers of the body wall. [1] The mesoglea can be thinner than the endoderm or ectoderm or comprise the bulk of the body as in larger jellyfish. The mesoglea can contain skeletal elements derived from cells migrated from ectoderm.

The sac-like body built up in this way is attached usually to some firm object by its blind end, and bears at the upper end the mouth which is surrounded by a circle of tentacles which resemble glove fingers. The tentacles are organs which serve both for the tactile sense and for the capture of food. [1] Polyps extend their tentacles, particularly at night, containing coiled stinging nettle-like cells or nematocysts which pierce and poison and firmly hold living prey paralysing or killing them. Polyp prey includes copepods and fish larvae. [2] Longitudinal muscular fibrils formed from the cells of the ectoderm allow tentacles to contract when conveying the food to the mouth. Similarly, circularly disposed muscular fibrils formed from the endoderm permit tentacles to be protract or thrust out once they are contracted. These muscle fibres belong to the same two systems, thus allows the whole body to retract or protrude outwards. [1]

We can distinguish therefore in the body of a polyp the column, circular or oval in section, forming the trunk, resting on a base or foot and surmounted by the crown of tentacles, which enclose an area termed the peristome, in the centre of which again is the mouth. As a rule there is no other opening to the body except the mouth, but in some cases excretory pores are known to occur in the foot, and pores may occur at the tips of the tentacles. Thus it is seen that a polyp is an animal of very simple structure, [1] a living fossil that has not changed significantly for about half a billion years (per generally accepted dating of Cambrian sedimentary rock).

The external form of the polyp varies greatly in different cases. The column may be long and slender, or may be so short in the vertical direction that the body becomes disk-like. The tentacles may number many hundreds or may be very few, in rare cases only one or two. They may be long and filamentous, or short and reduced to mere knobs or warts. They may be simple and unbranched, or they may be feathery in pattern. The mouth may be level with the surface of the peristome, or may be projecting and trumpet-shaped. As regards internal structure, polyps exhibit two well-marked types of organization, each characteristic of one of the two classes, Hydrozoa and Anthozoa. [1]

In the class Hydrozoa, the polyps are indeed often very simple, like the common little fresh water species of the genus Hydra . Anthozoan polyps, including the corals and sea anemones, are much more complex due to the development of a tubular stomodaeum leading inward from the mouth and a series of radial partitions called mesenteries. Many of the mesenteries project into the enteric cavity but some extend from the body wall to the central stomodaeum.

Reproduction

It is an almost universal attribute of polyps to reproduce asexually by the method of budding. This mode of reproduction may be combined with sexual reproduction, or may be the sole method by which the polyp produces offspring, in which case the polyp is entirely without sexual organs. [1]

Asexual reproduction

In many cases the buds formed do not separate from the parent but remain in continuity with it, thus forming colonies or stocks, which may reach a great size and contain a vast number of individuals. Slight differences in the method of budding produce great variations in the form of the colonies. The reef-building corals are polyp-colonies, strengthened by the formation of a firm skeleton. [1]

Sexual reproduction

Among sea anemones, sexual plasticity may occur. That is, asexually produced clones derived from a single founder individual can contain both male and female individuals (ramets). [3] When eggs and sperm (gametes) are formed, they can produce zygotes derived from "selfing" (within the founding clone) or out-crossing, that then develop into swimming planula larvae.

Polyps of a colony of Cnidaria Polyps of Cnidaria colony.jpg
Polyps of a colony of Cnidaria

The overwhelming majority of stony coral ( Scleractinia ) taxa are hermaphroditic in their adult colonies. [4] In these species, there is ordinarily synchronized release of eggs and sperm into the water during brief spawning events. [5] Although some species are capable of self-fertilization to varying extents, cross-fertilization appears to be the dominant mating pattern. [4]

Etymology

The name polyp was given by René Antoine Ferchault de Réaumur [6] to these organisms from their superficial resemblance to an octopus (French : poulpe, ultimately from Ancient Greek adverb πολύ (poly, "much") + noun πούς (pous, "foot")), with its circle of writhing arms round the mouth. This comparison contrasts to the common name "coral-insects" applied to the polyps which form coral. [1]

Threats

75% of the world's corals are threatened [7] due to overfishing, destructive fishing, coastal development, pollution, thermal stress, ocean acidification, crown-of-thorns starfish, and introduced invasive species. [8]

In recent decades the conditions that corals and polyps have found themselves in have been changing, leading to new diseases being observed in corals in many parts of the world, posing even greater risk to an already pressured animal. [9] Aquatic life has been put under a substantial amount of stress because of the pollutants caused by land-based agriculture. Particularly, exposure to the insecticide profenofos and the fungicide MEMC have played a major part in polyp retraction and biomass decrease. [10] [11] There have been many experiments resulting supporting hypothesis that heat stress in Acropora tenuis juvenile polyp provoke an up-regulation of protein in the endoplasmic reticulum. The results vary based on the polyp characteristics such as age, type, and growth stage.

See also

Notes

  1. 1 2 3 4 5 6 7 8 9 Wikisource-logo.svg One or more of the preceding sentences incorporates text from a publication now in the public domain : Minchin, Edward Alfred (1911). "Polyp". In Chisholm, Hugh (ed.). Encyclopædia Britannica . Vol. 22 (11th ed.). Cambridge University Press. p. 37.
  2. Chang, T.D. and Sullivan, J.M. "Temporal associations of coral and zooplankton activity on a Caribbean reef Archived 2011-06-06 at the Wayback Machine " Dartmouth Studies in Tropical Ecology. 2008. Accessed 2009-06-21.
  3. Schlesinger A, Kramarsky-Winter E, Rosenfeld H, Armoza-Zvoloni R, Loya Y (2010). "Sexual plasticity and self-fertilization in the sea anemone Aiptasia diaphana". PLOS ONE. 5 (7): e11874. Bibcode:2010PLoSO...511874S. doi: 10.1371/journal.pone.0011874 . PMC   2912375 . PMID   20686700.
  4. 1 2 Heyward AJ, Babcock, RC (1986). Self- and cross-fertilization in scleractinian corals. Marine Biology 90, 191–195
  5. Harrison PL, Babcock RC, Bull GD, Oliver JK, Wallace CC, Willis BL (March 1984). "Mass spawning in tropical reef corals". Science. 223 (4641): 1186–9. Bibcode:1984Sci...223.1186H. doi:10.1126/science.223.4641.1186. PMID   17742935. S2CID   31244527.
  6. Stott, Rebecca. "Darwin's ghosts: the secret history of evolution" New York, Spiegel & Grau (2012). ISBN   9781400069378
  7. "NOAA's Coral Reef Conservation Program: New Analysis: 75% of Coral Reefs Under Threat". coralreef.noaa.gov. Retrieved 2015-06-08.
  8. Burke, Reytar (2011). "Reefs at Risk Revisited" (Document). World Resources Institute.
  9. Barrero-Canosa-1, Duenas-2, Sanchez-3, J.-1, L.F.-2, J.A.-3 (March 2013). "Isolation of potential fungal pathogens in gorgonian corals at the Tropical Eastern Pacific". Coral Reefs; Heidelberg. 32 (1): 35–41. Bibcode:2013CorRe..32...35B. doi:10.1007/s00338-012-0972-2. S2CID   17561903. ProQuest   1357199805.{{cite journal}}: CS1 maint: multiple names: authors list (link) CS1 maint: numeric names: authors list (link)
  10. Markey, Kathryn L., Baird, Andrew H., Humphrey, Craig, and Negri, Andrew P (2007). "Insecticides and a fungicide affect multiple coral life stages" (PDF). Marine Ecology Progress Series. 330: 127–137. Bibcode:2007MEPS..330..127M. doi: 10.3354/meps330127 . Archived (PDF) from the original on 2022-10-09.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  11. Yuyama, Ikuko; Ito, Yoshihiko; Watanabe, Toshiki; Hidaka, Michio; Suzuki, Yoshimi; Nishida, Mutsumi (2012). "Differential gene expression in juvenile polyps of the coral Acropora tenuis exposed to thermal and chemical stresses". Journal of Experimental Marine Biology and Ecology. 430–431: 17–24. doi:10.1016/j.jembe.2012.06.020.


Related Research Articles

<span class="mw-page-title-main">Cnidaria</span> Aquatic animal phylum having cnydocytes

Cnidaria is a phylum under kingdom Animalia containing over 11,000 species of aquatic animals found both in fresh water and marine environments, including jellyfish, hydroids, sea anemones, corals and some of the smallest marine parasites. Their distinguishing features are a decentralized nervous system distributed throughout a gelatinous body and the presence of cnidocytes or cnidoblasts, specialized cells with ejectable flagella used mainly for envenomation and capturing prey. Their bodies consist of mesoglea, a non-living, jelly-like substance, sandwiched between two layers of epithelium that are mostly one cell thick. Cnidarians are also some of the only animals that can reproduce both sexually and asexually.

<span class="mw-page-title-main">Coral</span> Marine invertebrates of the class Anthozoa.

Corals are colonial marine invertebrates within the class Anthozoa of the phylum Cnidaria. They typically form compact colonies of many identical individual polyps. Coral species include the important reef builders that inhabit tropical oceans and secrete calcium carbonate to form a hard skeleton.

<span class="mw-page-title-main">Hydrozoa</span> Class of cnidarians

Hydrozoa is a taxonomic class of individually very small, predatory animals, some solitary and some colonial, most of which inhabit saline water. The colonies of the colonial species can be large, and in some cases the specialized individual animals cannot survive outside the colony. A few genera within this class live in freshwater habitats. Hydrozoans are related to jellyfish and corals and belong to the phylum Cnidaria.

<i>Obelia</i> Genus of hydrozoans

Obelia is a genus of hydrozoans, a class of mainly marine and some freshwater animal species that have both polyp and medusa stages in their life cycle. Hydrozoa belongs to the phylum Cnidaria, which are aquatic organisms that are relatively simple in structure with a diameter around 1mm. There are currently 120 known species, with more to be discovered. These species are grouped into three broad categories: O. bidentata, O. dichotoma, and O. geniculata. O. longissima was later accepted as a legitimate species, but taxonomy regarding the entire genus is debated over.

<span class="mw-page-title-main">Anthozoa</span> Class of cnidarians without a medusa stage

Anthozoa is a class of marine invertebrates which includes the sea anemones, stony corals and soft corals. Adult anthozoans are almost all attached to the seabed, while their larvae can disperse as part of the plankton. The basic unit of the adult is the polyp; this consists of a cylindrical column topped by a disc with a central mouth surrounded by tentacles. Sea anemones are mostly solitary, but the majority of corals are colonial, being formed by the budding of new polyps from an original, founding individual. Colonies are strengthened by calcium carbonate and other materials and take various massive, plate-like, bushy or leafy forms.

<span class="mw-page-title-main">Scleractinia</span> Order of Hexacorallia which produce a massive stony skeleton

Scleractinia, also called stony corals or hard corals, are marine animals in the phylum Cnidaria that build themselves a hard skeleton. The individual animals are known as polyps and have a cylindrical body crowned by an oral disc in which a mouth is fringed with tentacles. Although some species are solitary, most are colonial. The founding polyp settles and starts to secrete calcium carbonate to protect its soft body. Solitary corals can be as much as 25 cm (10 in) across but in colonial species the polyps are usually only a few millimetres in diameter. These polyps reproduce asexually by budding, but remain attached to each other, forming a multi-polyp colony of clones with a common skeleton, which may be up to several metres in diameter or height according to species.

<span class="mw-page-title-main">Medusozoa</span> Clade of marine invertebrates

Medusozoa is a clade in the phylum Cnidaria, and is often considered a subphylum. It includes the classes Hydrozoa, Scyphozoa, Staurozoa and Cubozoa, and possibly the parasitic Polypodiozoa. Medusozoans are distinguished by having a medusa stage in their often complex life cycle, a medusa typically being an umbrella-shaped body with stinging tentacles around the edge. With the exception of some Hydrozoa, all are called jellyfish in their free-swimming medusa phase.

<i>Carybdea</i> Genus of jellyfishes

Carybdea is a genus of venomous box jellyfish within the family Carybdeidae that currently consists of a total of 8 species. This genus of jellyfish are often found in warm waters around the world in waters such as the Mediterranean Sea, the Pacific Ocean, and off the coast of Africa. Their sting can cause a range of effects depending on the species. These invertebrates will go through both sexual and asexual reproduction as they transform from a polyp to medusa. Carybdea have a box-shaped bell with four tentacles and eye-like sensory structures. There are distinct physical markings that differentiate many species within the genus. While Carybdea use their venom to act as predators, they are also preyed on by turtles and various fish. They feed on plankton, invertebrates, fish, and some crustaceans.

<i>Turritopsis dohrnii</i> Species of small, biologically immortal jellyfish

Turritopsis dohrnii, also known as the immortal jellyfish, is a species of small, biologically immortal jellyfish found worldwide in temperate to tropic waters. It is one of the few known cases of animals capable of reverting completely to a sexually immature, colonial stage after having reached sexual maturity as a solitary individual. Others include the jellyfish Laodicea undulata and species of the genus Aurelia.

<i>Aiptasia</i> Genus of sea anemones

Aiptasia is a genus of a symbiotic cnidarian belonging to the class Anthozoa. Aiptasia is a widely distributed genus of temperate and tropical sea anemones of benthic lifestyle typically found living on mangrove roots and hard substrates. These anemones, as well as many other cnidarian species, often contain symbiotic dinoflagellate unicellular algae of the genus Symbiodinium living inside nutritive cells. The symbionts provide food mainly in the form of lipids and sugars produced from photosynthesis to the host while the hosts provides inorganic nutrients and a constant and protective environment to the algae. Species of Aiptasia are relatively weedy anemones able to withstand a relatively wide range of salinities and other water quality conditions. In the case of A. pallida and A. pulchella, their hardiness coupled with their ability to reproduce very quickly and out-compete other species in culture gives these anemones the status of pest from the perspective of coral reef aquarium hobbyists. These very characteristics make them easy to grow in the laboratory and thus they are extensively used as model organisms for scientific study. In this respect, Aiptasia have contributed a significant amount of knowledge regarding cnidarian biology, especially human understanding of cnidarian-algal symbioses, a biological phenomenon crucial to the survival of corals and coral reef ecosystems. The dependence of coral reefs on the health of the symbiosis is dramatically illustrated by the devastating effects experienced by corals due to the loss of algal symbionts in response to environmental stress, a phenomenon known as coral bleaching.

<span class="mw-page-title-main">Hydroidolina</span> Subclass of hydrozoans

Hydroidolina is a subclass of Hydrozoa and makes up 90% of the class. Controversy surrounds who the sister groups of Hydroidolina are, but research has shown that three orders remain consistent as direct relatives: Siphonophorae, Anthoathecata, and Leptothecata.

<span class="mw-page-title-main">Sea anemone</span> Marine animals of the order Actiniaria

Sea anemones are a group of predatory marine invertebrates constituting the order Actiniaria. Because of their colourful appearance, they are named after the Anemone, a terrestrial flowering plant. Sea anemones are classified in the phylum Cnidaria, class Anthozoa, subclass Hexacorallia. As cnidarians, sea anemones are related to corals, jellyfish, tube-dwelling anemones, and Hydra. Unlike jellyfish, sea anemones do not have a medusa stage in their life cycle.

<span class="mw-page-title-main">Coralliidae</span> Family of corals

Coralliidae, also known as precious corals, is a taxonomic family of soft corals belonging to the suborder Scleraxonia of the phylum Cnidaria. These sessile corals are one of the most dominant members of hard-bottomed benthic environments such as seamounts, canyons and continental shelves. From this coral family results 69 descendants in which each species plays a key role in forming habitats for a variety of marine species.

<i>Millepora platyphylla</i> Species of hydrozoan

Millepora platyphylla is a species of fire coral, a type of hydrocoral, in the family Milleporidae. It is also known by the common names blade fire coral and plate fire coral. It forms a calcium carbonate skeleton and has toxic, defensive polyps that sting. It obtains nutrients by consuming plankton and via symbiosis with photosynthetic algae. The species is found from the Red Sea and East Africa to northern Australia and French Polynesia. It plays an important role in reef-building in the Indo-Pacific region. Depending on its environment, it can have a variety of different forms and structures.

<i>Euphyllia ancora</i> Species of coral

Euphyllia ancora is a species of hard coral in the family Euphylliidae. It is known by several common names, including anchor coral and hammer coral, or less frequently as sausage coral, ridge coral, or bubble honeycomb coral.

<span class="mw-page-title-main">Enthemonae</span> Suborder of sea anemone

The Enthemonae is a suborder of sea anemones in the order Actiniaria. It comprises those sea anemones with typical arrangement of mesenteries for actiniarians.

<span class="mw-page-title-main">Euphylliidae</span> Family of marine coral known as Euphylliidae

Euphylliidae are known as a family of polyped stony corals under the order Scleractinia.

<i>Clava multicornis</i> Genus of hydrozoans

Clava is a monotypic genus of hydrozoans in the family Hydractiniidae. It contains only one accepted species, Clava multicornis. Other names synonymous with Clava multicornis include Clava cornea, Clava diffusa, Clava leptostyla, Clava nodosa, Clava parasitica, Clava squamata, Coryne squamata, Hydra multicornis, and Hydra squamata. The larvae form of the species has a well developed nervous system compared to its small size. The adult form is also advanced due to its ability to stay dormant during unfavorable periods.

Chiropsella bronzie is a species of box jellyfish. It is considered much less of a threat to humans than some of its relatives. The species was described in 2006, and is one of four species in the genus Chiropsella. Chiropsella bronzie can be found in shallow waters off the coast of Queensland, Australia.