Generalized hypoxia

Last updated
Generalized hypoxia
Other namesArterial hypoxia[ citation needed ]
Bulletin CS-632 Hypoxia warning system p3 2012 002 5253 w6634419k.tiff
Oxygen sensor for hypoxia warning system, 1963
Specialty Pulmonology

Generalized hypoxia is a medical condition in which the tissues of the body are deprived of the necessary levels of oxygen due to an insufficient supply of oxygen, which may be due to the composition or pressure of the breathing gas, decreased lung ventilation, or respiratory disease, any of which may cause a lower than normal oxygen content in the arterial blood, and consequently a reduced supply of oxygen to all tissues perfused by the arterial blood. This usage is in contradistinction to localized hypoxia, in which only an associated group of tissues, usually with a common blood supply, are affected, usually due to an insufficient or reduced blood supply to those tissues. Genralized hypoxia is also used as a synonym for hypoxic hypoxia [1] [2] This is not to be confused with hypoxemia, which refers to low levels of oxygen in the blood, although the two conditions often occur simultaneously, since a decrease in blood oxygen typically corresponds to a decrease in oxygen in the surrounding tissue. However, hypoxia may be present without hypoxemia, and vice versa, as in the case of infarction. Several other classes of medical hypoxia exist. [2] [1]

Contents

Causes

Hypoxia can result from various causes which can be categorised as: anemic hypoxia, cellular hypoxia, generalised, or hypoxic hypoxia, pulmonary hypoxia, stagnant hypoxia, increased oxygen consumption due to a hypermetabolic state, or any combination of these. [2] The three fundamental causes of hypoxia at the tissue level are low oxygen content in the blood (hypoxemia), low perfusion of the tissue, and inability of the tissue to extraxt and use the oxygen in the blood. [3] Generalised, or hypoxic hypoxia may be caused by:

Altitude effects

When breathing the ambient air at high altitudes (above 3048 metres/10,000 feet), the human body experiences altitude sickness and hypoxemia due to a low partial pressure of oxygen, decreasing the carriage of oxygen by hemoglobin.

While breathing pure oxygen at ambient pressure, from an oxygen cylinder or other source, the maximum altitude a human can tolerate[ clarification needed ] while their body is at atmospheric pressure is 13,700 metres (45,000 feet),[ citation needed ] , where atmospheric pressure is about 14.7kPa. This is a function of the partial pressure of oxygen in the breathing gas, and is also dependent on level of exertion which affects the oxygen requirements of metabolism, cardiovascular fitness, and acclimatization to altitude which affects the available hemoglobin and can vary significantly between individuals. [ clarification needed ]

Signs and symptoms

Treatment

Generalized hypoxia is an effect of a lack of oxygen, and in many cases of a one-time event can be reversed simply by eliminating the lack. Where there is no underlying pathology, provision of oxygen at normobaric partial pressure (about 0.21 bar) is usually sufficient to reverse minor symptoms. Where there is a pathology causing the hypoxia, treatment of the underlying pathology is often effective. [6]

Angioplasties and stents are used to widen narrowed arteries and veins that may have restricted blood flow, while medication can be used to thin the blood or reduce plaque.[ relevant? ]

A healthy diet and lifestyle will prevent or lower the chance of experiencing a medical condition that causes hypoxia and will make congenital defects that cause it less likely to occur to your biological children.[ citation needed ][ relevant? ]

Other types of medical hypoxia

See also

Related Research Articles

<span class="mw-page-title-main">Hypoxia (medical)</span> Medical condition caused by lack of oxygen in the tissues

Hypoxia is a condition in which the body or a region of the body is deprived of adequate oxygen supply at the tissue level. Hypoxia may be classified as either generalized, affecting the whole body, or local, affecting a region of the body. Although hypoxia is often a pathological condition, variations in arterial oxygen concentrations can be part of the normal physiology, for example, during hypoventilation training or strenuous physical exercise.

<span class="mw-page-title-main">Respiratory system</span> Biological system in animals and plants for gas exchange

The respiratory system is a biological system consisting of specific organs and structures used for gas exchange in animals and plants. The anatomy and physiology that make this happen varies greatly, depending on the size of the organism, the environment in which it lives and its evolutionary history. In land animals the respiratory surface is internalized as linings of the lungs. Gas exchange in the lungs occurs in millions of small air sacs; in mammals and reptiles these are called alveoli, and in birds they are known as atria. These microscopic air sacs have a very rich blood supply, thus bringing the air into close contact with the blood. These air sacs communicate with the external environment via a system of airways, or hollow tubes, of which the largest is the trachea, which branches in the middle of the chest into the two main bronchi. These enter the lungs where they branch into progressively narrower secondary and tertiary bronchi that branch into numerous smaller tubes, the bronchioles. In birds the bronchioles are termed parabronchi. It is the bronchioles, or parabronchi that generally open into the microscopic alveoli in mammals and atria in birds. Air has to be pumped from the environment into the alveoli or atria by the process of breathing which involves the muscles of respiration.

<span class="mw-page-title-main">Respiratory failure</span> Inadequate gas exchange by the respiratory system

Respiratory failure results from inadequate gas exchange by the respiratory system, meaning that the arterial oxygen, carbon dioxide, or both cannot be kept at normal levels. A drop in the oxygen carried in the blood is known as hypoxemia; a rise in arterial carbon dioxide levels is called hypercapnia. Respiratory failure is classified as either Type 1 or Type 2, based on whether there is a high carbon dioxide level, and can be acute or chronic. In clinical trials, the definition of respiratory failure usually includes increased respiratory rate, abnormal blood gases, and evidence of increased work of breathing. Respiratory failure causes an altered mental status due to ischemia in the brain.

<span class="mw-page-title-main">Oxygen toxicity</span> Toxic effects of breathing oxygen at high concentrations

Oxygen toxicity is a condition resulting from the harmful effects of breathing molecular oxygen at increased partial pressures. Severe cases can result in cell damage and death, with effects most often seen in the central nervous system, lungs, and eyes. Historically, the central nervous system condition was called the Paul Bert effect, and the pulmonary condition the Lorrain Smith effect, after the researchers who pioneered the discoveries and descriptions in the late 19th century. Oxygen toxicity is a concern for underwater divers, those on high concentrations of supplemental oxygen, and those undergoing hyperbaric oxygen therapy.

<span class="mw-page-title-main">Barotrauma</span> Injury caused by pressure

Barotrauma is physical damage to body tissues caused by a difference in pressure between a gas space inside, or in contact with, the body, and the surrounding gas or fluid. The initial damage is usually due to over-stretching the tissues in tension or shear, either directly by expansion of the gas in the closed space or by pressure difference hydrostatically transmitted through the tissue. Tissue rupture may be complicated by the introduction of gas into the local tissue or circulation through the initial trauma site, which can cause blockage of circulation at distant sites or interfere with normal function of an organ by its presence.

<span class="mw-page-title-main">Acute respiratory distress syndrome</span> Human disease

Acute respiratory distress syndrome (ARDS) is a type of respiratory failure characterized by rapid onset of widespread inflammation in the lungs. Symptoms include shortness of breath (dyspnea), rapid breathing (tachypnea), and bluish skin coloration (cyanosis). For those who survive, a decreased quality of life is common.

In physiology, respiration is the movement of oxygen from the outside environment to the cells within tissues, and the removal of carbon dioxide in the opposite direction that's to the environment.

Hyperoxia occurs when cells, tissues and organs are exposed to an excess supply of oxygen (O2) or higher than normal partial pressure of oxygen.

<span class="mw-page-title-main">Hypoxemia</span> Abnormally low level of oxygen in the blood

Hypoxemia is an abnormally low level of oxygen in the blood. More specifically, it is oxygen deficiency in arterial blood. Hypoxemia has many causes, and often causes hypoxia as the blood is not supplying enough oxygen to the tissues of the body.

Freediving blackout, breath-hold blackout or apnea blackout is a class of hypoxic blackout, a loss of consciousness caused by cerebral hypoxia towards the end of a breath-hold dive, when the swimmer does not necessarily experience an urgent need to breathe and has no other obvious medical condition that might have caused it. It can be provoked by hyperventilating just before a dive, or as a consequence of the pressure reduction on ascent, or a combination of these. Victims are often established practitioners of breath-hold diving, are fit, strong swimmers and have not experienced problems before. Blackout may also be referred to as a syncope or fainting.

A pulmonary shunt refers to the passage of deoxygenated blood from the right side of the heart to the left without participation in gas exchange in the pulmonary capillaries. It is a pathological condition that results when the alveoli of the lungs are perfused with blood as normal, but ventilation fails to supply the perfused region. In other words, the ventilation/perfusion ratio is zero.

The Alveolar–arterial gradient, is a measure of the difference between the alveolar concentration (A) of oxygen and the arterial (a) concentration of oxygen. It is an useful parameter for narrowing the differential diagnosis of hypoxemia.

<span class="mw-page-title-main">Latent hypoxia</span> Tissue oxygen concentration sufficient to support consciousness only at depth

Latent hypoxia occurs when a diver under pressure has a tissue oxygen concentration that is sufficient to support consciousness at that pressure, but insufficient at surface pressure. This problem is associated with freediving blackout and the presence of hypoxic breathing gas mixtures in underwater breathing apparatus, particularly in diving rebreathers.

<span class="mw-page-title-main">Pulmonary contusion</span> Internal bruise of the lungs

A pulmonary contusion, also known as lung contusion, is a bruise of the lung, caused by chest trauma. As a result of damage to capillaries, blood and other fluids accumulate in the lung tissue. The excess fluid interferes with gas exchange, potentially leading to inadequate oxygen levels (hypoxia). Unlike pulmonary laceration, another type of lung injury, pulmonary contusion does not involve a cut or tear of the lung tissue.

<span class="mw-page-title-main">Oxygen saturation (medicine)</span> Medical measurement

Oxygen saturation is the fraction of oxygen-saturated hemoglobin relative to total hemoglobin in the blood. The human body requires and regulates a very precise and specific balance of oxygen in the blood. Normal arterial blood oxygen saturation levels in humans are 97–100 percent. If the level is below 90 percent, it is considered low and called hypoxemia. Arterial blood oxygen levels below 80 percent may compromise organ function, such as the brain and heart, and should be promptly addressed. Continued low oxygen levels may lead to respiratory or cardiac arrest. Oxygen therapy may be used to assist in raising blood oxygen levels. Oxygenation occurs when oxygen molecules enter the tissues of the body. For example, blood is oxygenated in the lungs, where oxygen molecules travel from the air and into the blood. Oxygenation is commonly used to refer to medical oxygen saturation.

Ventilation perfusion mismatch or V/Q defects are defects in the total lung ventilation/perfusion ratio. It is a condition in which one or more areas of the lung receive oxygen but no blood flow, or they receive blood flow but no oxygen. In a healthy lung, the rate of alveolar ventilation to the rate of pulmonary blood flow is roughly equal; more precisely, because normal lungs are not perfectly matched, the V/Q ratio of a healthy lung is approximately 0.8.

<span class="mw-page-title-main">Physiology of decompression</span> The physiological basis for decompression theory and practice

The physiology of decompression is the aspect of physiology which is affected by exposure to large changes in ambient pressure, and involves a complex interaction of gas solubility, partial pressures and concentration gradients, diffusion, bulk transport and bubble mechanics in living tissues. Gas is breathed at ambient pressure, and some of this gas dissolves into the blood and other fluids. Inert gas continues to be taken up until the gas dissolved in the tissues is in a state of equilibrium with the gas in the lungs,, or the ambient pressure is reduced until the inert gases dissolved in the tissues are at a higher concentration than the equilibrium state, and start diffusing out again.

Human physiology of underwater diving is the physiological influences of the underwater environment on the human diver, and adaptations to operating underwater, both during breath-hold dives and while breathing at ambient pressure from a suitable breathing gas supply. It, therefore, includes the range of physiological effects generally limited to human ambient pressure divers either freediving or using underwater breathing apparatus. Several factors influence the diver, including immersion, exposure to the water, the limitations of breath-hold endurance, variations in ambient pressure, the effects of breathing gases at raised ambient pressure, effects caused by the use of breathing apparatus, and sensory impairment. All of these may affect diver performance and safety.

<span class="mw-page-title-main">Silent hypoxia</span> Type of presentation of generalised hypoxia

Silent hypoxia is generalised hypoxia that does not coincide with shortness of breath. This presentation is known to be a complication of COVID-19, and is also known in walking pneumonia, altitude sickness, and rebreather diving.

<span class="mw-page-title-main">Ventilation-perfusion coupling</span>

Ventilation-perfusion coupling is the relationship between ventilation and perfusion processes, which take place in the respiratory and cardiovascular systems. Ventilation is the movement of gas during breathing, and perfusion is the process of pulmonary blood circulation, which delivers oxygen to body tissues. Anatomically, the lung structure, alveolar organization, and alveolar capillaries contribute to the physiological mechanism of ventilation and perfusion. Ventilation-perfusion coupling maintains a constant ratio near 0.8 on average, while the regional variation exists within the lungs due to gravity. When the ratio gets above or below 0.8, it is considered abnormal ventilation-perfusion coupling, also known as a ventilation-perfusion mismatch. Lung diseases, cardiac shunts, and smoking can cause a ventilation-perfusion mismatch that results in significant symptoms and diseases, which can be treated through treatments like bronchodilators and oxygen therapy.

References

  1. 1 2 3 Mandal, Ananya. "Hypoxia Types". www.news-medical.net. Retrieved 27 November 2022.
  2. 1 2 3 4 5 6 7 8 9 10 Manninen, Pirjo H.; Unger, Zoe M. (2016). "Hypoxia". In Prabhakar, Hemanshu (ed.). Complications in Neuroanesthesia. Academic Press (Elsevier). doi:10.1016/C2015-0-00811-5. ISBN   978-0-12-804075-1.
  3. 1 2 3 4 5 6 Bhutta, B.S.; Alghoula, F.; Berim, I. (9 August 2022). "Hypoxia". Treasure Island, FL: StatPearls [Internet].
  4. Elliott, David (1997). "Some limitations of semi-closed rebreathers". South Pacific Underwater Medicine Society Journal. 27 (1). ISSN   0813-1988. OCLC   16986801. Archived from the original on August 8, 2009. Retrieved 2008-06-14.{{cite journal}}: CS1 maint: unfit URL (link)
  5. Lindholm, Peter (2006). Lindholm, P.; Pollock, N. W.; Lundgren, C. E. G. (eds.). Physiological mechanisms involved in the risk of loss of consciousness during breath-hold diving (PDF). Breath-hold diving. Proceedings of the Undersea and Hyperbaric Medical Society/Divers Alert Network 2006 June 20–21 Workshop. Durham, NC: Divers Alert Network. p. 26. ISBN   978-1-930536-36-4 . Retrieved 24 January 2017.
  6. 1 2 3 4 5 6 7 8 9 "Hypoxia: Management and Treatment". my.clevelandclinic.org. Retrieved 27 November 2022.
  7. 1 2 3 4 5 6 7 8 9 10 11 Mandal, Ananya. "Hypoxia Symptoms". www.news-medical.net. Retrieved 27 November 2022.
  8. 1 2 3 4 5 "17: Aeromedical Factors". Pilot's Handbook of Aeronautical Knowledge: FAA Manual H-8083-25. Washington, DC: Flight Standards Service. Federal Aviation Administration, U.S. Dept. of Transportation. 2001. ISBN   1-56027-540-5.
  9. "A Quick Look at Reflexes - Health Encyclopedia - University of Rochester Medical Center".
  10. Choudhury, R. (20 November 2018). "Hypoxia and hyperbaric oxygen therapy: a review". Int J Gen Med. 11: 431–442. doi:10.2147/IJGM.S172460. PMC   6251354 . PMID   30538529.