Embolomeri

Last updated

Embolomeres
Temporal range: Mississippian - Wuchiapingian
Archeria2DB.jpg
Restoration of Archeria from the Lower Permian of Texas.
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Eukaryota
Kingdom: Animalia
Phylum: Chordata
Clade: Sarcopterygii
Clade: Tetrapodomorpha
Clade: Elpistostegalia
Clade: Stegocephali
Order: Embolomeri
Cope, 1885
Genera

See text.

Embolomeri is an order of tetrapods or stem-tetrapods, possibly members of Reptiliomorpha. Embolomeres first evolved in the Early Carboniferous (Mississippian) Period and were the largest and most successful predatory tetrapods of the Late Carboniferous (Pennsylvanian) Period. They were specialized semiaquatic predators with long bodies for eel-like undulatory swimming. Embolomeres are characterized by their vertebral centra, which are formed by two cylindrical segments, the pleurocentrum at the rear and intercentrum at the front. These segments are equal in size. Most other tetrapods have pleurocentra and intercentra which are drastically different in size and shape. [1]

Contents

Embolomeres were among the earliest large carnivorous tetrapods, with members such as the crocodilian-like Proterogyrinus appearing in the Visean stage of the Carboniferous. They declined in diversity during the Permian period, though at least one representative ( Archeria) was common in the Early Permian. [2] Embolomeres went extinct shortly before the end of the Permian. [3]

Classification

Vertebrae from several different tetrapods, with those of "Cricotus" (Archeria) in A-C, showing the large, cylindrical intercentra (I) and pleurocentra (P) The Osteology of the Reptiles p98.png
Vertebrae from several different tetrapods, with those of "Cricotus" ( Archeria ) in A-C, showing the large, cylindrical intercentra (I) and pleurocentra (P)

The order Embolomeri was first named by Edward Drinker Cope in 1884 during his revision of "batrachian" (amphibian) evolution. Embolomeri was differentiated from several other newly named amphibian orders, such as "Rachitomi", by the presence of intercentra and pleurocentra of the same size and shape, that being large cylinders. At the time, embolomere fossils were uncommon, so Cope could only identify "cricotids" such as Cricotus as possessing embolomerous vertebrae. [4] The genus name "Cricotus" is dubious, as it has been used by Cope to refer to embolomere fossils spanning anywhere between mid-Pennsylvanian deposits of Illinois and the Permian red beds of Texas. Most paleontologists now refer the red bed "Cricotus" specimens to the genus Archeria. [2]

Michel Laurin (1998) formally defined Embolomeri as "the last common ancestor of Proterogyrinus and Archeria and all of its descendants." [5] This definition excludes Eoherpeton , which is almost always considered a close ally of the group. Some authors place Silvanerpeton or chroniosuchians as close relatives as well, though they are generally agreed to lie outside Embolomeri proper. [6] [7] [8] [9]

The poorly-defined group Anthracosauria is sometimes considered synonymous with Embolomeri, and the group's namesake, Anthracosaurus , is an embolomere. However, other authors use the term "Anthracosauria" in reference to a broader group which includes embolomeres in combination with various other reptile-like amphibians (reptiliomorphs). Reptiliomorphs are all tetrapods more closely related to living reptiles and synapsids (mammals and their ancestors), rather than living amphibians. Despite this, reptiliomorphs likely had amphibian-like biological traits, such as water-based reproduction.

Many studies conducted since the 1990s have also placed the group Lepospondyli as closer to amniotes than embolomeres were. Lepospondyls are a particularly unusual group of tetrapods, with some members (i.e. brachystelechids) very similar to lissamphibians and others (i.e. tuditanids) very similar to amniotes. If lepospondyls are both close relatives of amniotes and the ancestors of modern amphibians, then that means that crown-Tetrapoda (descendants of the common ancestor to all living tetrapods) is a much more restricted group than previously assumed. In this situation, various traditional orders of Tetrapoda such as Embolomeri and Temnospondyli actually would qualify as stem-tetrapods due to having evolved prior to the split between modern amphibians and amniotes. [10]

However, most authors consider temnospondyls to be the ancestors of modern amphibians. This would suggest that embolomeres are likely reptiliomorphs (closer to reptiles) and within the clade Tetrapoda. [11] However, even this classification is not stable, as some analyses have found embolomeres to be more basal than temnospondyls. [12]

Below is a cladogram from Ruta et al. (2003): [11]

Tetrapoda

Eucritta melanolimnetes

Temnospondyli

Caerorhachis bairdi

Eoherpeton watsoni

Embolomeri

Proterogyrinus scheelei

Archeria crassidisca

Pholiderpeton scutigerum

Anthracosaurus russelli

Pholiderpeton (Eogyrinus) attheyi

Gephyrostegidae

Solenodonsaurus janenschi

Seymouriamorpha

Lepospondyli

Diadectomorpha

Amniota

Genera

List of genera
NameYearAgeLocationNotesImages
Anthracosaurus 1863 Pennsylvanian (Westphalian A-B)Flag of the United Kingdom.svg  United Kingdom (Flag of Scotland.svg  Scotland)The namesake of Anthracosauria, possessed a small number of large fangs compared to other embolomeres Anthracosaurus russeli12DB.jpg
Archeria 1918 Early Permian Flag of the United States.svg  United States (Flag of Texas.svg  Texas)A common, late-surviving member of the group, sometimes considered a species of Cricotus Cricotus crassidens.JPG
Aversor 1985 Early Permian (Ufimian)Flag of Russia.svg  Russia Supposedly the latest surviving eogyrinid, but very poorly known
Calligenethlon 1934 Pennsylvanian (Bashkirian)Flag of Canada (Pantone).svg  Canada (Flag of Nova Scotia.svg  Nova Scotia)The largest named tetrapod preserved inside lycopod tree stumps in the Joggins Fossil Cliffs
Cricotus 1875 Pennsylvanian Flag of the United States.svg  United States (Flag of Illinois.svg  Illinois)Responsible for the identification of Embolomeri as a unique order of tetrapods, although its history is convoluted and its taxonomic validity is questionable
Carbonoherpeton 1985 Pennsylvanian (Westphalian D)Flag of Canada (Pantone).svg  Canada (Flag of Nova Scotia.svg  Nova Scotia)A lightly built member of the group with characteristics of both archeriids and eogyrinids
Diplovertebron 1879 Pennsylvanian (Moscovian)Flag of the Czech Republic.svg  Czech Republic A small member of the group sometimes confused with Gephyrostegus Diplovertebron BW.jpg
Eobaphetes 1916 Pennsylvanian Flag of the United States.svg  United States (Flag of Kansas.svg  Kansas)A possible relative of Anthracosaurus, originally named "Erpetosuchus" until it was determined that the name was preoccupied by a Triassic reptile.
Eogyrinus 1926 Pennsylvanian (Westphalian B)Flag of the United Kingdom.svg  United Kingdom (Flag of England.svg  England)One of the largest and most well-known of the eogyrinids, although sometimes synonymized with Pholiderpeton Eogyrinus by Abelov2014.jpg
Eoherpeton 1975 Mississippian-Pennsylvanian (Visean-Bashkirian)Flag of the United Kingdom.svg  United Kingdom (Flag of Scotland.svg  Scotland)One of the oldest and most basal members of the group (if it even counts as part of it), without vertebrae that were not fully embolomerous Eoherpeton NT.jpg
Leptophractus 1873 Pennsylvanian (Westphalian D)Flag of the United States.svg  United States (Flag of Ohio.svg  Ohio)Known from a skull found at the Linton Diamond Mine
Neopteroplax 1963 Pennsylvanian Flag of the United States.svg  United States (Flag of Ohio.svg  Ohio)One of the largest Carboniferous limbed vertebrates known from North America Neopteroplax conemaughensis (fossil amphibian) (Birmingham Shale, Upper Pennsylvanian; Bloomingdale, Ohio, USA) 1 (49761151626).jpg
Palaeoherpeton 1970 Pennsylvanian (Westphalian A-B)Flag of the United Kingdom.svg  United Kingdom (Flag of Scotland.svg  Scotland)An eogyrinid known as Palaeogyrinus from 1926 to 1970, until it was determined that this name was occupied by a genus of beetles

Papposaurus

1914 Mississippian-Pennsylvanian (Namurian)Flag of the United Kingdom.svg  United Kingdom (Flag of Scotland.svg  Scotland)Known from a femur, may have been a relative of Proterogyrinus
Pholiderpeton 1869 Pennsylvanian (Westphalian A-B)Flag of the United Kingdom.svg  United Kingdom (Flag of England.svg  England, Flag of Scotland.svg  Scotland)An eogyrinid similar to Eogyrinus which would take priority if the two were synonymized Pholiderpeton NT.jpg
Proterogyrinus 1970 Mississippian (Serpukhovian)Flag of the United States.svg  United States (Flag of West Virginia.svg  West Virginia), Flag of the United Kingdom.svg  United Kingdom (Flag of Scotland.svg  Scotland)An early member of the group possessing robust limbs but lacking certain adaptations of later members of the group Proterogyrinus DB.jpg
Pteroplax 1868 Pennsylvanian (Westphalian B)Flag of the United Kingdom.svg  United Kingdom (Flag of England.svg  England)Poorly known despite being among the first embolomeres to be described Pteroplax DB.jpg
Seroherpeton 2020 Late Permian (Wuchiapingian)Flag of the People's Republic of China.svg  China The youngest known embolomere
Spondylerpeton 1912 Pennsylvanian Flag of the United States.svg  United States (Flag of Illinois.svg  Illinois)A close relative of Cricotus known from vertebrae found at the Mazon Creek fossil beds

Related Research Articles

<span class="mw-page-title-main">Tetrapod</span> Superclass of the first four-limbed vertebrates and their descendants

A tetrapod is any four-limbed vertebrate animal of the superclass Tetrapoda. Tetrapods include all extant and extinct amphibians and amniotes, with the latter in turn evolving into two major clades, the sauropsids and synapsids. Some tetrapods such as snakes, legless lizards, and caecilians had evolved to become limbless via mutations of the Hox gene, although some do still have a pair of vestigial spurs that are remnants of the hindlimbs.

<span class="mw-page-title-main">Amniote</span> Clade of tetrapods including reptiles, birds and mammals

Amniotes are tetrapod vertebrate animals belonging to the clade Amniota, a large group that comprises the vast majority of living terrestrial and semiaquatic vertebrates. Amniotes evolved from amphibian ancestors during the Carboniferous period and further diverged into two groups, namely the sauropsids and synapsids. They are distinguished from the other living tetrapod clade — the non-amniote lissamphibians — by the development of three extraembryonic membranes, thicker and keratinized skin, and costal respiration.

<span class="mw-page-title-main">Batrachia</span> Clade of amphibians

The Batrachia are a clade of amphibians that includes frogs and salamanders, but not caecilians nor the extinct allocaudates. The name Batrachia was first used by French zoologist Pierre André Latreille in 1800 to refer to frogs, but has more recently been defined in a phylogenetic sense as a node-based taxon that includes the last common ancestor of frogs and salamanders and all of its descendants. The idea that frogs and salamanders are more closely related to each other than either is to caecilians is strongly supported by morphological and molecular evidence; they are, for instance, the only vertebrates able to raise and lower their eyes. However, an alternative hypothesis exists in which salamanders and caecilians are each other's closest relatives as part of a clade called the Procera, with frogs positioned as the sister taxon of this group.

<span class="mw-page-title-main">Labyrinthodontia</span> Paraphyletic group of tetrapodomorphs

"Labyrinthodontia" is an informal grouping of extinct predatory amphibians which were major components of ecosystems in the late Paleozoic and early Mesozoic eras. Traditionally considered a subclass of the class Amphibia, modern classification systems recognize that labyrinthodonts are not a formal natural group (clade) exclusive of other tetrapods. Instead, they consistute an evolutionary grade, ancestral to living tetrapods such as lissamphibians and amniotes. "Labyrinthodont"-grade vertebrates evolved from lobe-finned fishes in the Devonian, though a formal boundary between fish and amphibian is difficult to define at this point in time.

<span class="mw-page-title-main">Reptiliomorpha</span> Clade of reptile-like animals

Reptiliomorpha is a clade containing the amniotes and those tetrapods that share a more recent common ancestor with amniotes than with living amphibians (lissamphibians). It was defined by Michel Laurin (2001) and Vallin and Laurin (2004) as the largest clade that includes Homo sapiens, but not Ascaphus truei. Laurin and Reisz (2020) defined Pan-Amniota as the largest total clade containing Homo sapiens, but not Pipa pipa, Caecilia tentaculata, and Siren lacertina.

<span class="mw-page-title-main">Anthracosauria</span> Paraphyletic group of tetrapodomorphs

Anthracosauria is an order of extinct reptile-like amphibians that flourished during the Carboniferous and early Permian periods, although precisely which species are included depends on one's definition of the taxon. "Anthracosauria" is sometimes used to refer to all tetrapods more closely related to amniotes such as reptiles, mammals, and birds, than to lissamphibians such as frogs and salamanders. An equivalent term to this definition would be Reptiliomorpha. Anthracosauria has also been used to refer to a smaller group of large, crocodilian-like aquatic tetrapods also known as embolomeres.

<span class="mw-page-title-main">Diadectomorpha</span> Extinct clade of tetrapods

Diadectomorpha is a clade of large tetrapods that lived in Euramerica during the Carboniferous and Early Permian periods and in Asia during Late Permian (Wuchiapingian), They have typically been classified as advanced reptiliomorphs positioned close to, but outside of the clade Amniota, though some recent research has recovered them as the sister group to the traditional Synapsida within Amniota, based on inner ear anatomy and cladistic analyses. They include both large carnivorous and even larger herbivorous forms, some semi-aquatic and others fully terrestrial. The diadectomorphs seem to have originated during late Mississippian times, although they only became common after the Carboniferous rainforest collapse and flourished during the Late Pennsylvanian and Early Permian periods.

<i>Westlothiana</i> Extinct genus of tetrapods

Westlothiana is a genus of reptile-like tetrapod that lived about 338 million years ago during the latest part of the Viséan age of the Carboniferous. Members of the genus bore a superficial resemblance to modern-day lizards. The genus is known from a single species, Westlothiana lizziae. The type specimen was discovered in the East Kirkton Limestone at the East Kirkton Quarry, West Lothian, Scotland in 1984. This specimen was nicknamed "Lizzie the lizard" by fossil hunter Stan Wood, and this name was quickly adopted by other paleontologists and the press. When the specimen was formally named in 1990, it was given the specific name "lizziae" in homage to this nickname. However, despite its similar body shape, Westlothiana is not considered a true lizard. Westlothiana's anatomy contained a mixture of both "labyrinthodont" and reptilian features, and was originally regarded as the oldest known reptile or amniote. However, updated studies have shown that this identification is not entirely accurate. Instead of being one of the first amniotes, Westlothiana was rather a close relative of Amniota. As a result, most paleontologists since the original description place the genus within the group Reptiliomorpha, among other amniote relatives such as diadectomorphs and seymouriamorphs. Later analyses usually place the genus as the earliest diverging member of Lepospondyli, a collection of unusual tetrapods which may be close to amniotes or lissamphibians, or potentially both at the same time.

<i>Casineria</i> Species of tetrapodomorph (fossil)

Casineria is an extinct genus of tetrapod which lived about 340-334 million years ago in the Mississippian epoch of the Carboniferous period. Its generic name, Casineria, is a latinization of Cheese Bay. The site near Edinburgh, Scotland where the holotype fossil was found. When originally described in 1999, it was identified as a transitional fossil noted for its mix of basal (amphibian-like) and advanced (reptile-like) characteristics, putting it at or very near the origin of the amniotes, the group containing all mammals, birds, modern reptiles, and other descendants of their reptile-like common ancestor. However, the sole known fossil is lacking key elements such as a skull, making exact analysis difficult. As a result, the classification of Casineria has been more controversial in analyses conducted since 1999. Other proposed affinities include a placement among the lepospondyls, seymouriamorphs, "gephyrostegids", or as a synonym of Caerorhachis, another controversial tetrapod which may have been an early temnospondyl.

<i>Proterogyrinus</i> Extinct genus of amphibians

Proterogyrinus is an extinct genus of early tetrapods from the order Embolomeri. Fossil remains of Proterogyrinus have been found in Scotland, UK, and West Virginia, United States, and date back to the Serpukhovian, which is from about 331 to 323 million years ago. The genus was originally named by renowned vertebrate paleontologist Alfred Sherwood Romer in 1970. A comprehensive redescription was later published by Canadian paleontologist Robert Holmes in 1984. The generic name "Proterogyrinus" is Greek for "earlier wanderer" or "earlier tadpole". This name was chosen by Romer in keeping with a trend of naming long-bodied early tetrapods with the suffix "-gyrinus".

<i>Eucritta</i> Extinct genus of tetrapods

Eucritta is an extinct genus of stem-tetrapod from the Viséan epoch in the Carboniferous period of Scotland. The name of the type and only species, E. melanolimnetes is a homage to the 1954 horror film Creature from the Black Lagoon.

<i>Anthracosaurus</i> Extinct genus of amphibians

Anthracosaurus is an extinct genus of embolomere, a possible distant relative of reptiles that lived during the Late Carboniferous in what is now Scotland, England, and Ohio. It was a large, aquatic eel-like predator. It has a robust skull about 40 centimetres (1.3 ft) in length with large teeth in the jaws and on the roof of the mouth. Anthracosaurus probably inhabited swamps, rivers and lakes. Its name is Greek for "coal lizard".

<i>Brachydectes</i> Extinct genus of amphibians

Brachydectes is an extinct genus of lysorophian amphibian that lived from the Carboniferous. It had a very small head and long body, B. elongatus had 1–2 centimetres (0.39–0.79 in) long skull and pre-sacral length up to 150 centimetres (59 in), while B. newberryi, which have proportionally larger skull than B. elongatus, for specimen with 7.6 millimetres (0.30 in) skull roof had estimated total length of 11 centimetres (4.3 in), while the largest skull exceeds 3 centimetres (1.2 in).

<span class="mw-page-title-main">Stegocephali</span> Clade of tetrapodomorphs

Stegocephali is a clade of vertebrate animals containing all fully limbed tetrapodomorphs. It is equivalent to a broad definition of the superclass Tetrapoda: under this broad definition, the term "tetrapod" applies to any animal descended from the first vertebrate with four limbs each with five digits in the extremity (pentadactyly), rather than fins of their sarcopterygian relatives.

<i>Acherontiscus</i> Extinct genus of amphibians

Acherontiscus is an extinct genus of stegocephalians that lived in the Early Carboniferous of Scotland. The type and only species is Acherontiscus caledoniae, named by paleontologist Robert Carroll in 1969. Members of this genus have an unusual combination of features which makes their placement within amphibian-grade tetrapods uncertain. They possess multi-bone vertebrae similar to those of embolomeres, but also a skull similar to lepospondyls. The only known specimen of Acherontiscus possessed an elongated body similar to that of a snake or eel. No limbs were preserved, and evidence for their presence in close relatives of Acherontiscus is dubious at best. Phylogenetic analyses created by Marcello Ruta and other paleontologists in the 2000s indicate that Acherontiscus is part of Adelospondyli, closely related to other snake-like animals such as Adelogyrinus and Dolichopareias. Adelospondyls are traditionally placed within the group Lepospondyli due to their fused vertebrae. Some analyses published since 2007 have argued that adelospondyls such as Acherontiscus may not actually be lepospondyls, instead being close relatives or members of the family Colosteidae. This would indicate that they evolved prior to the split between the tetrapod lineage that leads to reptiles (Reptiliomorpha) and the one that leads to modern amphibians (Batrachomorpha). Members of this genus were probably aquatic animals that were able to swim using snake-like movements.

<i>Odonterpeton</i> Extinct genus of amphibians

Odonterpeton is an extinct genus of "microsaur" from the Late Carboniferous of Ohio, containing the lone species Odonterpeton triangulare. It is known from a single partial skeleton preserving the skull, forelimbs, and the front part of the torso. The specimen was found in the abandoned Diamond Coal Mine of Linton, Ohio, a fossiliferous coal deposit dated to the late Moscovian stage, about 310 million years ago.

<i>Caerorhachis</i> Extinct genus of amphibians

Caerorhachis is an extinct genus of early tetrapod from the Early Carboniferous of Scotland, probably from the Serpukhovian stage. Its placement within Tetrapoda is uncertain, but it is generally regarded as a primitive member of the group. The type species C. bairdi was named in 1977.

<i>Eldeceeon</i> Extinct genus of reptile-like amphibians

Eldeceeon is an extinct genus of reptiliomorph from the Mississippian of Scotland. It is known from two fossil specimens found within the Viséan-age East Kirkton Quarry in West Lothian. The type and only species, E. rolfei, was named in 1994. Eldeceeon is thought to be closely related to embolomeres, but it has several distinguishing features including long limbs and a short trunk. Initially known from two crushed partial skeletons, additional specimens have been reported by Ruta & Clack (2006). Eldeceeon was redescribed by Ruta, Clack, & Smithson (2020). The redescription supported affinities with Silvanerpeton, reconstructed a skull with larger eyes and a shorter snout, and emphasized potential correlations for an enlarge puboischiofemoralis internus 2 muscle.

Calligenethlon is an extinct genus of embolomere tetrapodomorphs from the Late Carboniferous of Joggins, Nova Scotia. It is the only definitively identified embolomere from the Joggins Fossil Cliffs and is the largest tetrapod to have been found preserved in lycopod tree stumps.

Eobaphetes is an extinct genus of embolomere which likely lived in the Pennsylvanian of Kansas. The genus is based on several skull and jaw fragments of a single individual. They were originally described under the species Erpetosuchus kansasensis, but this was later changed to Eobaphetes kansasensis when it was determined that Erpetosuchus was preoccupied by a Triassic reptile.

References

  1. Panchen, A. L. (10 February 1972). "The skull and skeleton of Eogyrinus attheyi Watson (Amphibia: Labyrinthodontia)". Phil. Trans. R. Soc. Lond. B. 263 (851): 279–326. Bibcode:1972RSPTB.263..279P. doi: 10.1098/rstb.1972.0002 . ISSN   0080-4622.
  2. 1 2 Romer, Alfred Sherwood (11 January 1957). "The Appendicular Skeleton of the Permian Embolomerous Amphibian Archeria" (PDF). Contributions from the Museum of Paleontology. 13 (5): 105–159.
  3. Chen, Jianye; Liu, Jun (2020-12-01). "The youngest occurrence of embolomeres (Tetrapoda: Anthracosauria) from the Sunjiagou Formation (Lopingian, Permian) of North China". Fossil Record. 23 (2): 205–213. doi: 10.5194/fr-23-205-2020 . ISSN   2193-0066.
  4. Cope, E.D. (January 1884). "The Batrachia of the Permian Period of North America". The American Naturalist. 18: 26–39. doi:10.1086/273563. S2CID   84133633.
  5. Laurin, Michel (1998). "The importance of global parsimony and historical bias in understanding tetrapod evolution. Part I. Systematics, middle ear evolution and jaw suspension". Annales des Sciences Naturelles - Zoologie et Biologie Animale. 19 (1): 1–42. doi:10.1016/S0003-4339(98)80132-9.
  6. Chen, Jianye; Liu, Jun (2020-12-01). "The youngest occurrence of embolomeres (Tetrapoda: Anthracosauria) from the Sunjiagou Formation (Lopingian, Permian) of North China". Fossil Record. 23 (2): 205–213. doi: 10.5194/fr-23-205-2020 . ISSN   2193-0066.
  7. Klembara, Jozef; Clack, Jennifer A.; Čerňanský, Andrej (2010-09-16). "The anatomy of palate of Chroniosaurus dongusensis (Chroniosuchia, Chroniosuchidae) from the Upper Permian of Russia". Palaeontology. 53 (5): 1147–1153. doi:10.1111/j.1475-4983.2010.00999.x. ISSN   0031-0239.
  8. Carroll, Robert L. (2012-10-18). "The Importance of Recognizing Our Limited Knowledge of the Fossil Record in the Analysis of Phylogenetic Relationships among Early Tetrapods". Fieldiana Life and Earth Sciences. 5: 5–16. doi:10.3158/2158-5520-5.1.5. ISSN   2158-5520. S2CID   85114894.
  9. Sookias, Roland B.; Böhmer, Christine; Clack, Jennifer A. (2014-10-07). "Redescription and Phylogenetic Analysis of the Mandible of an Enigmatic Pennsylvanian (Late Carboniferous) Tetrapod from Nova Scotia, and the Lability of Meckelian Jaw Ossification". PLOS ONE. 9 (10): e109717. Bibcode:2014PLoSO...9j9717S. doi: 10.1371/journal.pone.0109717 . ISSN   1932-6203. PMC   4188710 . PMID   25290449.
  10. Laurin, M.; Reisz, R.R. (1999). "A new study of Solenodonsaurus janenschi, and a reconsideration of amniote origins and stegocephalian evolution". Canadian Journal of Earth Sciences. 36 (8): 1239–1255. doi:10.1139/e99-036.
  11. 1 2 Marcello Ruta, Michael I. Coates and Donald L. J. Quicke (2003). "Early tetrapod relationships revisited" (PDF). Biological Reviews. 78 (2): 251–345. doi:10.1017/S1464793102006103. PMID   12803423. S2CID   31298396. Archived from the original (PDF) on 2008-05-22. Retrieved 2012-05-26.
  12. Clack, J. A. (July 2002). "An early tetrapod from 'Romer's Gap'". Nature. 418 (6893): 72–76. doi:10.1038/nature00824. ISSN   0028-0836. PMID   12097908. S2CID   741732.