Adelospondyli

Last updated

Adelospondyls
Temporal range: Late Mississippian, Serpukhovian
Adelospondylus2.jpg
Life restoration of Adelospondylus
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Eukaryota
Kingdom: Animalia
Phylum: Chordata
Clade: Sarcopterygii
Clade: Tetrapodomorpha
Clade: Stegocephali
Order: Adelospondyli
Watson, 1930
Families and genera

Adelospondyli is an order of elongated, presumably aquatic, Carboniferous amphibians ( sensu lato ). They have a robust skull roofed with solid bone, and orbits located towards the front of the skull. The limbs were almost certainly absent, [1] although some historical sources reported them to be present. Despite the likely absence of limbs, adelospondyls retained a large part of the bony shoulder girdle. Adelospondyls have been assigned to a variety of groups in the past. They have traditionally been seen as members of the subclass Lepospondyli, related to other unusual early tetrapods such as "microsaurs", "nectrideans", and aïstopods. [1] [2] [3] Analyses such as Ruta & Coates (2007) have offered an alternate classification scheme, arguing that adelospondyls were actually far removed from other lepospondyls, instead being stem-tetrapod stegocephalians closely related to the family Colosteidae. [4]

Contents

Most adelospondyls belong to the family Adelogyrinidae, and prior to 2003 the order and family were considered synonymous. In 2003, Ruta et al. assigned Acherontiscus to the order as the only known non-adelogyrinid member. [2] Members of this group are very rare; only six known specimens can be assigned to the five known genera with absolute confidence. These specimens are known from Mississippian (Serpukhovian Age) geological deposits in Scotland, and they were among the oldest "lepospondyls" known from fossils. [2]

Description

A skeletal diagram of Acherontiscus Acherontiscus skeletal.png
A skeletal diagram of Acherontiscus

Adelospondyls share a variety of traits with other lepospondyls, although whether these traits are an example of convergent evolution is a controversial topic. Like the aïstopods and lysorophian "microsaurs", they had very elongated bodies similar to that of snakes and eels. In addition, they lacked limbs (similarly to the aïstopods), although forelimbs were supposedly found in various adelogyrinids in the late 1960s. Andrews & Carroll (1991) found that all cases of forelimb bones in adelogyrinids were actually misinterpretations. For example, putative forelimbs discovered in Adelogyrinus and Palaeomolgophis by Brough & Brough (1967) were re-identified as hyoid bones and ribs, respectively. Carroll (1967) also claimed that forelimbs were present in Adelospondylus , but these later considered to be hyoids as in Adelogyrinus. [1]

Skull

Adelospondyls had somewhat long and low skulls, with large orbits (eye sockets) shifted towards the front of the skull. As a result, the proportions of the skull bones were affected. For example, the nasal bones along the midline of the skull in front of the eyes were much shorter than the frontal bones directly behind them, which extended forwards past the level of the eyes. The frontal bones were omitted from the edge of the orbits (eye holes) due to a contact between the pre- and post-frontals which typically lie in front of and behind the orbits, respectively. Unlike lysorophians and aïstopods, which had snake-like skulls with large openings and reduced bone material, adelospondyl skulls were strongly built and covered with ridges, pits, and grooves, including lateral line sulci. They typically possessed many teeth, although such teeth differ in structure between families. Adelogyrinids, for example, had many numerous "chisel-shaped" teeth, [1] while Acherontiscus had blunt teeth at the back of the mouth and sharp, thin teeth at the front. [5] As is the case in other lepospondyls, the teeth of adelospondyls did not have a maze-like internal structure like those of "labyrinthodonts", nor did adelospondyls possess enlarged fang-like teeth on the roof of the mouth. [1]

Life restoration of Palaeomolgophis Palaeomolgophis.jpg
Life restoration of Palaeomolgophis

Similar to various other lepospondyls, adelospondyls lost several bones in the temporal region of the skull, which is at the back of the skull between the quadratojugal bone of the jaw joint and the parietal and postparietal bones at the midline of the skull roof. Stem- and crown-tetrapods typically have three to four bones on each side of the skull in this region (from top to bottom): the tabular, supratemporal (and sometimes an adjacent intertemporal), and squamosal. The intertemporal is lost (or fused into other bones) in a variety of unrelated tetrapod groups. The same process additionally occurs to the supratemporal in several lepospondyls, namely "microsaurs" [6] and a few "nectrideans" such as Scincosaurus and diplocaulids. [7] Adelospondyls take this one step further. They possess only a single bone between the jaw joint and the skull roof. This bone is often believed to be a fusion between the tabular and the squamosal (termed a "tabular-squamosal" or "squamosotabular"), [1] [2] although it is also conceivable that the tabular disappeared completely leaving only the enlarged squamosal in its place. [8]

Postcranial bones

Adelospondyls can also be characterized by their vertebrae compared to other lepospondyls. They were spool-shaped and high in number, with Acherontiscus having an estimated 64 vertebrae [5] and an indeterminate juvenile adelogyrinid having at least 70. [1] Most of these vertebrae lack haemal spines, indicating that the primary elongation took place in the body rather than the tail. The neural spines are not fused to the centra, a characteristic which D.M.S. Watson (1929) used to characterize the adelospondyls as a distinct order. [9] In fact, the name "adelospondyl" is Greek for "obscure vertebra", referencing both the rarity of adelospondyls and this trait. However, Watson also included Lysorophus as an adelospondyl rather than a lysorophian "microsaur", and other studies have shown that the absence of neurocentral fusion is very common among tetrapods, and therefore useless as a distinguishing feature. [1] However, adelospondyls do have an additional quality of the vertebrae which is unique compared to other lepospondyls. In most lepospondyls, the left and right halves of each vertebra's neural arch are separate, rather than fused as in other tetrapods. Adelospondyls retain the primitive condition of the two halves being completely fused, making their vertebrae unique among lepospondyls. [1] Acherontiscus deviates from the norm of the subclass even more than other adelospondyls, as it possessed two separate bony components of the centra, rather than a single centrum (which is the case in adelogyrinids and other lepospondyls). These two different components (the intercentrum at the front and pleurocentrum at the back) were nearly equal in size, similar to the vertebrae of embolomeres. [5]

Although adelospondyls lost all trace of their fore- and hind-limbs, they did retain a notable remnant of their presumably limbed ancestors. This remnant is a large bony dermal shoulder girdle, comprising the plate-like interclavicle which was positioned on the midline of the chest, two clavicle bones on either side of it, and two boomerang-shaped cleithrum bones at the base of the neck. On the other hand, the bones of the endochondral shoulder girdle (i.e. the scapulae and coracoids), which supported the forelimbs, were lost along with the limbs. Adelospondyls possessed a large bony hyoid apparatus, including gill-supporting bones such as hypobranchials and ceratobranchials. Long, thin scales have been preserved in most adelospondyl specimens, and they were more abundant on the ventral (belly) side of the body rather than the dorsal (back) side. [1]

Related Research Articles

<span class="mw-page-title-main">Labyrinthodontia</span> Paraphyletic group of tetrapodomorphs

"Labyrinthodontia" is an informal grouping of extinct predatory amphibians which were major components of ecosystems in the late Paleozoic and early Mesozoic eras. Traditionally considered a subclass of the class Amphibia, modern classification systems recognize that labyrinthodonts are not a formal natural group (clade) exclusive of other tetrapods. Instead, they consistute an evolutionary grade, ancestral to living tetrapods such as lissamphibians and amniotes. "Labyrinthodont"-grade vertebrates evolved from lobe-finned fishes in the Devonian, though a formal boundary between fish and amphibian is difficult to define at this point in time.

<span class="mw-page-title-main">Lepospondyli</span> Polyphyletic group of tetrapodomorphs

Lepospondyli is a diverse taxon of early tetrapods. With the exception of one late-surviving lepospondyl from the Late Permian of Morocco, lepospondyls lived from the Early Carboniferous (Mississippian) to the Early Permian and were geographically restricted to what is now Europe and North America. Five major groups of lepospondyls are known: Adelospondyli; Aïstopoda; Lysorophia; Microsauria; and Nectridea. Lepospondyls have a diverse range of body forms and include species with newt-like, eel- or snake-like, and lizard-like forms. Various species were aquatic, semiaquatic, or terrestrial. None were large, and they are assumed to have lived in specialized ecological niches not taken by the more numerous temnospondyl amphibians that coexisted with them in the Paleozoic. Lepospondyli was named in 1888 by Karl Alfred von Zittel, who coined the name to include some tetrapods from the Paleozoic that shared some specific characteristics in the notochord and teeth. Lepospondyls have sometimes been considered to be either related or ancestral to modern amphibians or to Amniota. It has been suggested that the grouping is polyphyletic, with aïstopods being primitive stem-tetrapods, while recumbirostran microsaurs are primitive reptiles.

Lysorophia is an order of fossorial Carboniferous and Permian tetrapods within the Recumbirostra. Lysorophians resembled small snakes, as their bodies are extremely elongate. There is a single family, the Molgophidae. Currently there are around five genera included within Lysorophia, although many may not be valid.

<span class="mw-page-title-main">Aistopoda</span> Extinct order of amphibians

Aistopoda is an order of highly specialised snake-like stegocephalians known from the Carboniferous and Early Permian of Europe and North America, ranging from tiny forms only 5 centimetres (2 in), to nearly 1 metre (3.3 ft) in length. They first appear in the fossil record in the Mississippian period and continue through to the Early Permian.

Lethiscus is the earliest known representative of the Aistopoda, a group of very specialised snake-like tetrapodomorphs known from the early Carboniferous (Mississippian).

<span class="mw-page-title-main">Reptiliomorpha</span> Clade of reptile-like animals

Reptiliomorpha is a clade containing the amniotes and those tetrapods that share a more recent common ancestor with amniotes than with living amphibians (lissamphibians). It was defined by Michel Laurin (2001) and Vallin and Laurin (2004) as the largest clade that includes Homo sapiens, but not Ascaphus truei. Laurin and Reisz (2020) defined Pan-Amniota as the largest total clade containing Homo sapiens, but not Pipa pipa, Caecilia tentaculata, and Siren lacertina.

<i>Westlothiana</i> Extinct genus of tetrapods

Westlothiana is a genus of reptile-like tetrapod that lived about 338 million years ago during the latest part of the Viséan age of the Carboniferous. Members of the genus bore a superficial resemblance to modern-day lizards. The genus is known from a single species, Westlothiana lizziae. The type specimen was discovered in the East Kirkton Limestone at the East Kirkton Quarry, West Lothian, Scotland in 1984. This specimen was nicknamed "Lizzie the lizard" by fossil hunter Stan Wood, and this name was quickly adopted by other paleontologists and the press. When the specimen was formally named in 1990, it was given the specific name "lizziae" in homage to this nickname. However, despite its similar body shape, Westlothiana is not considered a true lizard. Westlothiana's anatomy contained a mixture of both "labyrinthodont" and reptilian features, and was originally regarded as the oldest known reptile or amniote. However, updated studies have shown that this identification is not entirely accurate. Instead of being one of the first amniotes, Westlothiana was rather a close relative of Amniota. As a result, most paleontologists since the original description place the genus within the group Reptiliomorpha, among other amniote relatives such as diadectomorphs and seymouriamorphs. Later analyses usually place the genus as the earliest diverging member of Lepospondyli, a collection of unusual tetrapods which may be close to amniotes or lissamphibians, or potentially both at the same time.

<span class="mw-page-title-main">Nectridea</span> Extinct order of amphibians

Nectridea is the name of an extinct order of lepospondyl tetrapods from the Carboniferous and Permian periods, including animals such as Diplocaulus. In appearance, they would have resembled modern newts or aquatic salamanders, although they are not close relatives of modern amphibians. They were characterized by long, flattened tails to aid in swimming, as well as numerous features of the vertebrae.

<span class="mw-page-title-main">Microsauria</span> Extinct order of tetrapods

Microsauria is an extinct, possibly polyphyletic order of tetrapods from the late Carboniferous and early Permian periods. It is the most diverse and species-rich group of lepospondyls. Recently, Microsauria has been considered paraphyletic, as several other non-microsaur lepospondyl groups such as Lysorophia seem to be nested in it. Microsauria is now commonly used as a collective term for the grade of lepospondyls that were originally classified as members of Microsauria.

<i>Acherontiscus</i> Extinct genus of amphibians

Acherontiscus is an extinct genus of stegocephalians that lived in the Early Carboniferous of Scotland. The type and only species is Acherontiscus caledoniae, named by paleontologist Robert Carroll in 1969. Members of this genus have an unusual combination of features which makes their placement within amphibian-grade tetrapods uncertain. They possess multi-bone vertebrae similar to those of embolomeres, but also a skull similar to lepospondyls. The only known specimen of Acherontiscus possessed an elongated body similar to that of a snake or eel. No limbs were preserved, and evidence for their presence in close relatives of Acherontiscus is dubious at best. Phylogenetic analyses created by Marcello Ruta and other paleontologists in the 2000s indicate that Acherontiscus is part of Adelospondyli, closely related to other snake-like animals such as Adelogyrinus and Dolichopareias. Adelospondyls are traditionally placed within the group Lepospondyli due to their fused vertebrae. Some analyses published since 2007 have argued that adelospondyls such as Acherontiscus may not actually be lepospondyls, instead being close relatives or members of the family Colosteidae. This would indicate that they evolved prior to the split between the tetrapod lineage that leads to reptiles (Reptiliomorpha) and the one that leads to modern amphibians (Batrachomorpha). Members of this genus were probably aquatic animals that were able to swim using snake-like movements.

<i>Odonterpeton</i> Extinct genus of amphibians

Odonterpeton is an extinct genus of "microsaur" from the Late Carboniferous of Ohio, containing the lone species Odonterpeton triangulare. It is known from a single partial skeleton preserving the skull, forelimbs, and the front part of the torso. The specimen was found in the abandoned Diamond Coal Mine of Linton, Ohio, a fossiliferous coal deposit dated to the late Moscovian stage, about 310 million years ago.

<i>Rhynchonkos</i> Extinct genus of tetrapods

Rhynchonkos is an extinct genus of rhynchonkid microsaur. Originally known as Goniorhynchus, it was renamed in 1981 because the name had already been given to another genus; the family, likewise, was originally named Goniorhynchidae but renamed in 1988. The type and only known species is R. stovalli, found from the Early Permian Fairmont Shale in Cleveland County, Oklahoma. Rhynchonkos shares many similarities with Eocaecilia, an early caecilian from the Early Jurassic of Arizona. Similarities between Rhynchonkos and Eocaecilia have been taken as evidence that caecilians are descendants of microsaurs. However, such a relationship is no longer widely accepted.

Trihecaton is an extinct genus of microsaur from the Late Pennsylvanian of Colorado. Known from a single species, Trihecaton howardinus, this genus is distinctive compared to other microsaurs due to possessing a number of plesiomorphic ("primitive") features relative to the rest of the group. These include large intercentra, folded enamel, and a large coronoid process of the jaw. Its classification is controversial due to combining a long body with strong limbs, features which typically are not present at the same time in other microsaurs. Due to its distinctiveness, Trihecaton has been given its own monospecific family, Trihecatontidae.

Utaherpeton is an extinct genus of lepospondyl amphibian from the Carboniferous of Utah. It is one of the oldest and possibly one of the most basal ("primitive") known lepospondyls. The genus is monotypic, including only the type species Utaherpeton franklini. Utaherpeton was named in 1991 from the Manning Canyon Shale Formation, which dates to the Mississippian-Pennsylvanian boundary. It was originally classified within Microsauria, a group of superficially lizard- and salamander-like lepospondyls that is now no longer considered to be a valid clade or evolutionary grouping, but rather an evolutionary grade consisting of the most basal lepospondyls. Utaherpeton has been proposed as both the most basal lepospondyl and the oldest "microsaur", although more derived lepospondyls are known from earlier in the Carboniferous. However, its position within Lepospondyli remains uncertain due to the incomplete preservation of the only known specimen. The inclusion of Utaherpeton in various phylogenetic analyses has resulted in multiple phylogenies that are very different from one another, making it a significant taxon in terms of understanding the interrelationships of lepospondyls.

<i>Scincosaurus</i> Extinct genus of tetrapodomorphs

Scincosaurus is an extinct genus of nectridean tetrapodomorphs within the family Scincosauridae.

<span class="mw-page-title-main">Skull roof</span> Roofing bones of the skull

The skull roof or the roofing bones of the skull are a set of bones covering the brain, eyes and nostrils in bony fishes and all land-living vertebrates. The bones are derived from dermal bone and are part of the dermatocranium.

Altenglanerpeton is an extinct genus of microsaur tetrapod from the Late Carboniferous or Early Permian of Germany. Altenglanerpeton was named in 2012 after the Altenglan Formation in which it was found. The type and only species is A. schroederi.

<span class="mw-page-title-main">Holospondyli</span> Polyphyletic group of tetrapodomorphs

Holospondyli is a proposed clade of lepospondyls from the Early Carboniferous to the Late Permian that includes the aistopods, the paraphyletic nectrideans, and possibly also Adelospondyli. However, aistopods have since been recovered as stem-tetrapods more primitive than temnospondyls or other groups of lepospondyls.

<span class="mw-page-title-main">Urocordylidae</span> Extinct family of tetrapodomorphs

The Urocordylidae are an extinct family of nectridean lepospondyl amphibians. Urocordylids lived during the Late Carboniferous and Early Permian in what is now Europe and North America and are characterized by their very long, paddle-like tails. In life, they were probably newt-like and aquatic.

<i>Andersonerpeton</i> Extinct genus of tetrapodomorphs

Andersonerpeton is an extinct genus of aïstopod from the Bashkirian of Nova Scotia, Canada. It is known from a single jaw, which shares an unusual combination of features from both other aistopods and from stem-tetrapod tetrapodomorph fish. As a result, Andersonerpeton is significant for supporting a new classification scheme which states that aistopods evolved much earlier than previously expected. The genus contains a single species, A. longidentatum, which was previously believed to have been a species of the microsaur Hylerpeton.

References

  1. 1 2 3 4 5 6 7 8 9 10 Andrews, S. M.; Carroll, R. L. (1991). "The Order Adelospondyli: Carboniferous lepospondyl amphibians". Earth and Environmental Science Transactions of the Royal Society of Edinburgh. 82 (3): 239–275. doi:10.1017/S0263593300005332. ISSN   1473-7116. S2CID   84460890.
  2. 1 2 3 4 Marcello Ruta, Michael I. Coates and Donald L. J. Quicke (2003). "Early tetrapod relationships revisited" (PDF). Biological Reviews. 78 (2): 251–345. doi:10.1017/S1464793102006103. PMID   12803423. S2CID   31298396.
  3. Marjanović, David; Laurin, Michel (2019-01-04). "Phylogeny of Paleozoic limbed vertebrates reassessed through revision and expansion of the largest published relevant data matrix". PeerJ. 6: e5565. doi: 10.7717/peerj.5565 . ISSN   2167-8359. PMC   6322490 . PMID   30631641.
  4. Ruta, Marcello; Coates, Michael I. (1 March 2007). "Dates, nodes and character conflict: Addressing the Lissamphibian origin problem". Journal of Systematic Palaeontology. 5 (1): 69–122. Bibcode:2007JSPal...5...69R. doi:10.1017/S1477201906002008. S2CID   86479890.
  5. 1 2 3 Carroll, Robert L. (1969). "A new family of Carboniferous amphibians" (PDF). Palaeontology (12). Archived from the original (PDF) on 2010-02-15.
  6. Carroll, Robert L.; Gaskill, Pamela (1978). The Order Microsauria. Philadelphia: The American Philosophical Society. ISBN   978-0871691262.
  7. Germain, Damien (March 2010). "The Moroccan diplocaulid: the last lepospondyl, the single one on Gondwana". Historical Biology. 22 (1–3): 4–39. Bibcode:2010HBio...22....4G. doi:10.1080/08912961003779678. ISSN   0891-2963. S2CID   128605530.
  8. Marjanović, David (21 August 2010). "Phylogeny of the limbed vertebrates with special consideration of the origin of the modern amphibians" (PDF). Dissertation.
  9. Watson, D.M.S. (1929). "The Carboniferous Amphibia of Scotland". Palaeontologia Hungarica. 1: 219–252.