Orobates

Last updated

Orobates
Temporal range: Cisuralian
Orobates.png
Holotype specimen
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Eukaryota
Kingdom: Animalia
Phylum: Chordata
Order: Diadectomorpha
Family: Diadectidae
Genus: Orobates
Berman et al., 2004
Type species
Orobates pabsti
Berman et al., 2004

Orobates is an extinct genus of diadectid reptiliomorphs that lived during the Early Permian. Its fossilised remains were found in Germany. [1] A combination of primitive and derived traits (i.e. autapomorphic and plesiomorphic) distinguish it from all other well-known members of Diadectidae, a family of herbivorous reptiliomorphs. It weighed about 4 kg and appears to have been part of an upland fauna, browsing on high fibre plants. [1] [2]

Restoration Orobates BW.jpg
Restoration

Locomotion

Model of an Orobates made by the Humboldt University: red parts are reconstructed from the fossil, blue parts are mirrors of the red parts, and yellow parts are estimations. Orobates Pabsti-3.jpg
Model of an Orobates made by the Humboldt University: red parts are reconstructed from the fossil, blue parts are mirrors of the red parts, and yellow parts are estimations.

The trace fossil species Ichniotherium sphaerodactylum, from Bromacker in Germany, has been attributed to Orobates. [3] A study in 2015 found that the genus was characterized by a long body and tail, with fairly short legs and a short skull compared to the more derived Diadectes . This indicates Orobates was less specialised for long treks compared to Diadectes. A three-dimensional digital reconstruction of the holotype specimen allowed further analysis of the postcranium. [2] An analysis of the mobility of the hip joint of the reconstructed holotype indicated that its limb function was similar to that of modern salamanders. [2]

A detailed multidisciplinary study published in 2019 found that Orobates moved more like modern caimans than salamanders. The study began with the digitization of its holotype specimen using CT scanning to figure out the range of motion of its joints. A digital model of its fossil trackways helped narrow down the possibilities. The researchers also studied the locomotion of four extant sprawling tetrapods using X-ray motion analysis. The extant tetrapods chosen for the study were axolotls, blue-tongued skinks, green iguanas, and spectacled caimans. [4]

The biomechanical data of the locomotion of the extant tetrapods and the digital models of Orobates' holotype and fossilized trackways were then used to create a dynamic simulation. It allowed the researchers to account for physical factors like gravity, friction, and balance. The simulation was then validated under real-world conditions with a life-sized robot called OroBOT. The researchers tested 512 different gaits and found that Orobates moved most like a caiman. It had a relatively erect posture and walked with a slight side-to-side motion. [4] [5] [6] A follow-up study focused on the muscle strains occurring within the muscles of the hindlimb in modelled strides at different postures. [7] While results remained inconclusive towards favouring a single posture during locomotion, the overall results did not contradict the previous study based on OroBOT.

Related Research Articles

<span class="mw-page-title-main">Tetrapod</span> Superclass of the first four-limbed vertebrates and their descendants

A tetrapod is any four-limbed vertebrate animal of the superclass Tetrapoda. Tetrapods include all extant and extinct amphibians and amniotes, with the latter in turn evolving into two major clades, the sauropsids and synapsids. Some tetrapods such as snakes, legless lizards, and caecilians had evolved to become limbless via mutations of the Hox gene, although some do still have a pair of vestigial spurs that are remnants of the hindlimbs.

<span class="mw-page-title-main">Amniote</span> Clade of tetrapods including reptiles, birds and mammals

Amniotes are tetrapod vertebrate animals belonging to the clade Amniota, a large group that comprises the vast majority of living terrestrial and semiaquatic vertebrates. Amniotes evolved from amphibian ancestors during the Carboniferous period and further diverged into two groups, namely the sauropsids and synapsids. They are distinguished from the other living tetrapod clade — the non-amniote lissamphibians — by the development of three extraembryonic membranes, thicker and keratinized skin, and costal respiration.

<span class="mw-page-title-main">Labyrinthodontia</span> Subclass of early amphibious tetrapods

"Labyrinthodontia" is an informal grouping of extinct predatory amphibians which were major components of ecosystems in the late Paleozoic and early Mesozoic eras. Traditionally considered a subclass of the class Amphibia, modern classification systems recognize that labyrinthodonts are not a formal natural group (clade) exclusive of other tetrapods. Instead, they consistute an evolutionary grade, ancestral to living tetrapods such as lissamphibians and amniotes. "Labyrinthodont"-grade vertebrates evolved from lobe-finned fishes in the Devonian, though a formal boundary between fish and amphibian is difficult to define at this point in time.

<span class="mw-page-title-main">Batrachomorpha</span> Clade of amphibians

The Batrachomorpha are a clade containing recent and extinct amphibians that are more closely related to modern amphibians than they are to mammals and reptiles. According to many analyses they include the extinct Temnospondyli; some show that they include the Lepospondyli instead. The name traditionally indicated a more limited group.

<span class="mw-page-title-main">Lepospondyli</span> Extinct subclass of amphibians

Lepospondyli is a diverse taxon of early tetrapods. With the exception of one late-surviving lepospondyl from the Late Permian of Morocco, lepospondyls lived from the Early Carboniferous (Mississippian) to the Early Permian and were geographically restricted to what is now Europe and North America. Five major groups of lepospondyls are known: Adelospondyli; Aïstopoda; Lysorophia; Microsauria; and Nectridea. Lepospondyls have a diverse range of body forms and include species with newt-like, eel- or snake-like, and lizard-like forms. Various species were aquatic, semiaquatic, or terrestrial. None were large, and they are assumed to have lived in specialized ecological niches not taken by the more numerous temnospondyl amphibians that coexisted with them in the Paleozoic. Lepospondyli was named in 1888 by Karl Alfred von Zittel, who coined the name to include some tetrapods from the Paleozoic that shared some specific characteristics in the notochord and teeth. Lepospondyls have sometimes been considered to be either related or ancestral to modern amphibians or to Amniota. It has been suggested that the grouping is polyphyletic, with aïstopods being primitive stem-tetrapods, while recumbirostran microsaurs are primitive reptiles.

<i>Diadectes</i> Extinct genus of reptiles

Diadectes is an extinct genus of large reptiliomorphs or synapsids that lived during the early Permian period. Diadectes was one of the first herbivorous tetrapods, and also one of the first fully terrestrial vertebrates to attain large size.

<span class="mw-page-title-main">Diadectidae</span> Extinct family of tetrapods

Diadectidae is an extinct family of early tetrapods that lived in what is now North America and Europe during the Late Carboniferous and Early Permian, and in Asia during the Late Permian. They were the first herbivorous tetrapods, and also the first fully terrestrial animals to attain large sizes. Footprints indicate that diadectids walked with an erect posture. They were the first to exploit plant material in terrestrial food chains, making their appearance an important stage in both vertebrate evolution and the development of terrestrial ecosystems.

<span class="mw-page-title-main">Diadectomorpha</span> Extinct clade of tetrapods

Diadectomorpha is a clade of large tetrapods that lived in Euramerica during the Carboniferous and Early Permian periods and in Asia during Late Permian (Wuchiapingian), They have typically been classified as advanced reptiliomorphs positioned close to, but outside of the clade Amniota, though some recent research has recovered them as the sister group to the traditional Synapsida within Amniota, based on inner ear anatomy and cladistic analyses. They include both large carnivorous and even larger herbivorous forms, some semi-aquatic and others fully terrestrial. The diadectomorphs seem to have originated during late Mississippian times, although they only became common after the Carboniferous rainforest collapse and flourished during the Late Pennsylvanian and Early Permian periods.

<span class="mw-page-title-main">Embolomeri</span> Extinct order of tetrapods

Embolomeri is an order of tetrapods or stem-tetrapods, possibly members of Reptiliomorpha. Embolomeres first evolved in the Early Carboniferous (Mississippian) Period and were the largest and most successful predatory tetrapods of the Late Carboniferous (Pennsylvanian) Period. They were specialized semiaquatic predators with long bodies for eel-like undulatory swimming. Embolomeres are characterized by their vertebral centra, which are formed by two cylindrical segments, the pleurocentrum at the rear and intercentrum at the front. These segments are equal in size. Most other tetrapods have pleurocentra and intercentra which are drastically different in size and shape.

Ichniotherium is an ichnogenus of tetrapod footprints from between the Late Carboniferous period to the Early Permian period attributed to diadectomorph track-makers. These footprints are commonly found in Europe, and have also been identified in North America and Morocco. Three ichnospecies of Ichniotherium have been proposed as valid: I. cotta, I. sphaerodactylum, and I. praesidentis.

<i>Limnoscelis</i> Genus of diadectomorphs

Limnoscelis was a genus of large diadectomorph tetrapods from the Late Carboniferous of western North America. It includes two species: the type species Limnoscelis paludis from New Mexico, and Limnoscelis dynatis from Colorado, both of which are thought to have lived concurrently. No specimens of Limnoscelis are known from outside of North America. Limnoscelis was carnivorous, and likely semiaquatic, though it may have spent a significant portion of its life on land. Limnoscelis had a combination of derived amphibian and primitive reptilian features, and its placement relative to Amniota has significant implications regarding the origins of the first amniotes.

<span class="mw-page-title-main">Evolution of reptiles</span> Origin and diversification of reptiles through geologic time

Reptiles arose about 320 million years ago during the Carboniferous period. Reptiles, in the traditional sense of the term, are defined as animals that have scales or scutes, lay land-based hard-shelled eggs, and possess ectothermic metabolisms. So defined, the group is paraphyletic, excluding endothermic animals like birds that are descended from early traditionally-defined reptiles. A definition in accordance with phylogenetic nomenclature, which rejects paraphyletic groups, includes birds while excluding mammals and their synapsid ancestors. So defined, Reptilia is identical to Sauropsida.

Ambedus is an extinct genus of possible diadectid reptiliomorph. Fossils have been found from the Early Permian Dunkard Group of Monroe County, Ohio. The type species A. pusillus was named in 2004. The genus name comes from the Latin word ambedo meaning "to nibble", in reference to its herbivorous diet. The specific name pusillus means "tiny" in Latin.

Oradectes is an extinct genus of diadectid reptiliomorph. It is known from a single partial skeleton collected from the Early Permian Cutler Formation of Colorado in the United States. The type species, O. sanmiguelensis, was originally named as a species of Diadectes in 1965. It was given its own genus in 2010.

<i>Stephanospondylus</i> Extinct genus of tetrapods

Stephanospondylus is an extinct genus of diadectid reptiliomorph from the Early Permian of Germany. Fossils have been found in deposits of the Lower Rotliegend near Dresden. The type species S. pugnax was originally referred to the genus Phanerosaurus in 1882 but was placed in its own genus in 1905.

<span class="mw-page-title-main">Tambach Formation</span>

The Tambach Formation is an Early Permian-age geologic formation in central Germany. It consists of red to brown-colored sedimentary rocks such as conglomerate, sandstone, and mudstone, and is the oldest portion of the Upper Rotliegend within the Thuringian Forest Basin.

Alveusdectes is an extinct genus of diadectid tetrapod from the Late Permian of China. Like other diadectids, it was a large-bodied terrestrial herbivore capable of eating tough fibrous plant material. It was described in 2015 on the basis of a single partial skull and lower jaw found in the Shangshihezi Formation near the city of Jiyuan in Henan. This skull was found in a layer of the Shangshihezi Formation that dates to about 256 million years ago and contains the remains of many other terrestrial tetrapods including pareiasaurs, chroniosuchians, and therapsids. Alveusdectes is the youngest known diadectid by 16 million years and is also the only diadectid known from Asia. It likely represents a late-surviving lineage of diadectids that radiated eastward from western Laurasia into north China. Diadectids are otherwise absent from eastern Laurasia, which may reflect their low diversity at the time. Diadectids first appeared in the Late Carboniferous and were the first animals to have ever occupied the niche of large-bodied herbivores, allowing them to undergo an evolutionary radiation in the Early Permian. By the Late Permian many other groups of tetrapods had entered that niche, and increased competition among herbivores likely resulted in the eventual extinction of diadectids. Alveusdectes may have been able to persist because the fauna of north China seems to have been isolated from other Laurasian faunas during the Late Permian, meaning that fewer herbivores were competing for the same ecological space.

This list of fossil amphibians described in 2018 is a list of new taxa of fossil amphibians that were described during the year 2018, as well as other significant discoveries and events related to amphibian paleontology that occurred in 2018.

Amphisauropus is an amphibian ichnogenus commonly found in assemblages of ichnofossils dating to the Permian to Triassic. It has been found in Europe, Morocco, and North America.

<i>Dimetropus</i> Trace fossil

Dimetropus is a reptile ichnogenus commonly found in assemblages of ichnofossils dating to the Permian to Triassic in Europe and North America. Analysis of trackways of Dimetropus provides evidence that the tracks were left by diadectids or non-therapsid synapsids ("pelycosaurs").

References

  1. 1 2 Berman, D. S.; Henrici, A. C.; Kissel, R. A.; Sumida, S. S.; Martens, T. (2004). "A new diadectid (Diadectomorpha), Orobates pabsti, from the Early Permian of Central Germany". Bulletin of Carnegie Museum of Natural History. 35: 1–36. doi:10.2992/0145-9058(2004)35[1:ANDDOP]2.0.CO;2. S2CID   86621953.
  2. 1 2 3 Nyakatura, J. A.; Allen, V. R.; Lauströer, J.; Andikfar, A.; Danczak, M.; Ullrich, H.-J.; Hufenbach, W.; Martens, T.; Fischer, M. S. (10 September 2015). "A Three-Dimensional Skeletal Reconstruction of the Stem Amniote Orobates pabsti (Diadectidae): Analyses of Body Mass, Centre of Mass Position, and Joint Mobility". PLOS ONE. 10 (9): e0137284. doi: 10.1371/journal.pone.0137284 . PMC   4565719 . PMID   26355297.
  3. Voigt, S.; Berman, D. S.; Henrici, A. C. (2007). "First well-established track-trackmaker association of Paleozoic tetrapods based on Ichniotherium trackways and diadectid skeletons from the Lower Permian of Germany". Journal of Vertebrate Paleontology. 27 (3): 553–570. doi:10.1671/0272-4634(2007)27[553:FWTAOP]2.0.CO;2. S2CID   131256847.
  4. 1 2 Nyakatura, J. A.; Melo, K.; Horvat, T.; Karakasiliotis, K.; Allen, V. R.; Andikfar, A.; Andrada, E.; Arnold, P.; Lauströer, J.; Hutchinson, J. R.; Fischer, M. S.; Ijspeert, A. J. (16 January 2019). "Reverse-engineering the locomotion of a stem amniote" (PDF). Nature . 565 (7739): 351–355. doi:10.1038/s41586-018-0851-2. eISSN   1476-4687. PMID   30651613. S2CID   58014495.
  5. Baker, N. (16 January 2019). "Watch: Robot reveals how ancient reptile ancestor moved". Nature . doi:10.1038/d41586-019-00186-x. PMID   30657749. S2CID   58579101 . Retrieved 18 January 2019.
  6. Wong, K. (17 January 2019). "RoboFossil Reveals Locomotion of Beast from Deep Time". Scientific American . Retrieved 18 January 2019.
  7. Zwafing, M.; Lautenschlager, S.; Demuth, O. E.; Nyakatura, J. A. (2021). "Modeling Sprawling Locomotion of the Stem Amniote Orobates: An Examination of Hindlimb Muscle Strains and Validation Using Extant Caiman". Frontiers in Ecology and Evolution. 9. doi: 10.3389/fevo.2021.659039 . ISSN   2296-701X.