Gait

Last updated
Elephant walking Elephant walking.gif
Elephant walking

Gait is the pattern of movement of the limbs of animals, including humans, during locomotion over a solid substrate. Most animals use a variety of gaits, selecting gait based on speed, terrain, the need to maneuver, and energetic efficiency. Different animal species may use different gaits due to differences in anatomy that prevent use of certain gaits, or simply due to evolved innate preferences as a result of habitat differences. While various gaits are given specific names, the complexity of biological systems and interacting with the environment make these distinctions "fuzzy" at best. Gaits are typically classified according to footfall patterns, but recent studies often prefer definitions based on mechanics. The term typically does not refer to limb-based propulsion through fluid mediums such as water or air, but rather to propulsion across a solid substrate by generating reactive forces against it (which can apply to walking while underwater as well as on land).

Contents

Due to the rapidity of animal movement, simple direct observation is rarely sufficient to give any insight into the pattern of limb movement. In spite of early attempts to classify gaits based on footprints or the sound of footfalls, it was not until Eadweard Muybridge and Étienne-Jules Marey began taking rapid series of photographs that proper scientific examination of gaits could begin.

Overview

Milton Hildebrand pioneered the contemporary scientific analysis and the classification of gaits. The movement of each limb was partitioned into a stance phase, where the foot was in contact with the ground, and a swing phase, where the foot was lifted and moved forwards. [1] [2] Each limb must complete a cycle in the same length of time, otherwise one limb's relationship to the others can change with time, and a steady pattern cannot occur. Thus, any gait can completely be described in terms of the beginning and end of stance phase of three limbs relative to a cycle of a reference limb, usually the left hindlimb.

Variables

Gait graphs in the style of Hildebrand. Dark areas indicate times of contact, bottom axis is % of cycle Gait graphs v2.png
Gait graphs in the style of Hildebrand. Dark areas indicate times of contact, bottom axis is % of cycle

Gaits are generally classed as "symmetrical" and "asymmetrical" based on limb movement. It is important to note that these terms have nothing to do with left-right symmetry. In a symmetrical gait, the left and right limbs of a pair alternate, while in an asymmetrical gait, the limbs move together. Asymmetrical gaits are sometimes termed "leaping gaits", due to the presence of a suspended phase.

The key variables for gait are the duty factor and the forelimb-hindlimb phase relationship. Duty factor is simply the percent of the total cycle which a given foot is on the ground. This value will usually be the same for forelimbs and hindlimbs unless the animal is moving with a specially trained gait or is accelerating or decelerating. Duty factors over 50% are considered a "walk", while those less than 50% are considered a run. Forelimb-hindlimb phase is the temporal relationship between the limb pairs. If the same-side forelimbs and hindlimbs initiate stance phase at the same time, the phase is 0 (or 100%). If the same-side forelimb contacts the ground half of the cycle later than the hindlimb, the phase is 50%.

Physiological effects of gait

Gait choice can have effects beyond immediate changes in limb movement and speed, notably in terms of ventilation. Because they lack a diaphragm, lizards and salamanders must expand and contract their body wall in order to force air in and out of their lungs, but these are the same muscles used to laterally undulate the body during locomotion. Thus, they cannot move and breathe at the same time, a situation called Carrier's constraint, though some, such as monitor lizards, can circumvent this restriction via buccal pumping. In contrast, the spinal flexion of a galloping mammal causes the abdominal viscera to act as a piston, inflating and deflating the lungs as the animal's spine flexes and extends, increasing ventilation and allowing greater oxygen exchange.

Differences between species

A hamster walking on a transparent treadmill.
Alternating tripod gait of walking desert ants.

Animals typically use different gaits in a speed-dependent manner. Almost all animals are capable of symmetrical gaits, while asymmetrical gaits are largely confined to mammals, who are capable of enough spinal flexion to increase stride length (though small crocodilians are capable of using a bounding gait). Lateral sequence gaits during walking and running are most common in mammals,[3] but arboreal mammals such as monkeys, some opossums, and kinkajous use diagonal sequence walks for enhanced stability.[3] Diagonal sequence walks and runs (aka trots) are most frequently used by sprawling tetrapods such as salamanders and lizards, due to the lateral oscillations of their bodies during movement. Bipeds are a unique case, and most bipeds will display only three gaits—walking, running, and hopping—during natural locomotion. Other gaits, such as human skipping, are not used without deliberate effort.

Hexapod gaits have also been well characterized, particularly for drosophila and stick insects (Phasmatodea). Drosophila use a tripod gait where 3 legs swing together while 3 legs remain on the ground in stance. [3] However, variability in gait is continuous. Flies do not show distinct transitions between gaits but are more likely to walk in a tripod configuration at higher speeds. At lower speeds, they are more likely to walk with 4 or 5 legs in stance. [4] Tetrapod coordination (when 4 legs are in stance) is where diagonally opposite pairs of legs swing together. Wave (sometimes called a metachronal wave) describes walking where only 1 leg enters swing at a time. This movement propagates from back to front on side of the body and then the opposite. Stick Insects, a larger hexapod, only shows a tripod gait during the larval stage. As adults at low speeds, they are most likely to walk in a metachronal wave, where only 1 leg swings at a time. At higher speeds, they walk in a tetrapod coordination with 2 legs paired in swing or a metachronal wave, only moving one leg at a time. [5]

Energy-based gait classification

While gaits can be classified by footfall, new work involving whole-body kinematics and force-plate records has given rise to an alternative classification scheme, based on the mechanics of the movement. In this scheme, movements are divided into walking and running. Walking gaits are all characterized by a "vaulting" movement of the body over the legs, frequently described as an inverted pendulum (displaying fluctuations in kinetic and potential energy which are out of phase), a mechanism described by Giovanni Cavagna. In running, the kinetic and potential energy fluctuate in-phase, and the energy change is passed on to muscles, bones, tendons and ligaments acting as springs (thus it is described by the spring-mass model).

Energetics

Bison galloping Muybridge Buffalo galloping.gif
Bison galloping

Speed generally governs gait selection, with quadrupedal mammals moving from a walk to a run to a gallop as speed increases. Each of these gaits has an optimum speed, at which the minimum calories per metre are consumed, and costs increase at slower or faster speeds. Gait transitions occur near the speed where the cost of a fast walk becomes higher than the cost of a slow run. Unrestrained animals will typically move at the optimum speed for their gait to minimize energy cost. The cost of transport is used to compare the energetics of different gaits, as well as the gaits of different animals.

Non-tetrapod gaits

In spite of the differences in leg number shown in terrestrial vertebrates, according to the inverted pendulum model of walking and spring-mass model of running, "walks" and "runs" are seen in animals with 2, 4, 6, or more legs. The term "gait" has even been applied to flying and swimming organisms that produce distinct patterns of wake vortices.

See also

Related Research Articles

<span class="mw-page-title-main">Bipedalism</span> Terrestrial locomotion using two limbs

Bipedalism is a form of terrestrial locomotion where a tetrapod moves by means of its two rear limbs or legs. An animal or machine that usually moves in a bipedal manner is known as a biped, meaning 'two feet'. Types of bipedal movement include walking or running and hopping.

<span class="mw-page-title-main">Walking</span> Gait of locomotion among legged animals

Walking is one of the main gaits of terrestrial locomotion among legged animals. Walking is typically slower than running and other gaits. Walking is defined by an "inverted pendulum" gait in which the body vaults over the stiff limb or limbs with each step. This applies regardless of the usable number of limbs—even arthropods, with six, eight, or more limbs, walk. In humans, walking has health benefits including improved mental health and reduced risk of cardiovascular disease and death.

<span class="mw-page-title-main">Brachiation</span> Form of arboreal locomotion involving swinging by the arm

Brachiation, or arm swinging, is a form of arboreal locomotion in which primates swing from tree limb to tree limb using only their arms. During brachiation, the body is alternately supported under each forelimb. This form of locomotion is the primary means of locomotion for the small gibbons and siamangs of southeast Asia. Gibbons in particular use brachiation for as much as 80% of their locomotor activities. Some New World monkeys, such as spider monkeys and muriquis, were initially classified as semibrachiators and move through the trees with a combination of leaping and brachiation. Some New World species also practice suspensory behaviors by using their prehensile tail, which acts as a fifth grasping hand. Evidence has shown that the extinct ape Proconsul from the Miocene of East Africa developed an early form of suspensory behaviour, and was therefore referred to as a probrachiator.

<span class="mw-page-title-main">Gait (human)</span> A pattern of limb movements made during locomotion

A gait is a manner of limb movements made during locomotion. Human gaits are the various ways in which humans can move, either naturally or as a result of specialized training. Human gait is defined as bipedal forward propulsion of the center of gravity of the human body, in which there are sinuous movements of different segments of the body with little energy spent. Varied gaits are characterized by differences such as limb movement patterns, overall velocity, forces, kinetic and potential energy cycles, and changes in contact with the ground.

<span class="mw-page-title-main">Animal locomotion</span> Self-propulsion by an animal

Animal locomotion, in ethology, is any of a variety of methods that animals use to move from one place to another. Some modes of locomotion are (initially) self-propelled, e.g., running, swimming, jumping, flying, hopping, soaring and gliding. There are also many animal species that depend on their environment for transportation, a type of mobility called passive locomotion, e.g., sailing, kiting (spiders), rolling or riding other animals (phoresis).

Robot locomotion is the collective name for the various methods that robots use to transport themselves from place to place.

<span class="mw-page-title-main">Cursorial</span>

A cursorial organism is one that is adapted specifically to run. An animal can be considered cursorial if it has the ability to run fast or if it can keep a constant speed for a long distance. "Cursorial" is often used to categorize a certain locomotor mode, which is helpful for biologists who examine behaviors of different animals and the way they move in their environment. Cursorial adaptations can be identified by morphological characteristics, physiological characteristics, maximum speed, and how often running is used in life. There is much debate over how to define a cursorial animal specifically. The most accepted definitions include that a cursorial organism could be considered adapted to long-distance running at high speeds or has the ability to accelerate quickly over short distances. Among vertebrates, animals under 1 kg of mass are rarely considered cursorial, and cursorial behaviors and morphology are thought to only occur at relatively large body masses in mammals. There are a few mammals that have been termed "micro-cursors" that are less than 1 kg in mass and have the ability to run faster than other small animals of similar sizes.

<i>Euparkeria</i> Extinct genus of reptiles

Euparkeria is an extinct genus of archosauriform reptile from the Triassic of South Africa. Euparkeria is close to the ancestry of Archosauria, the reptile group that includes crocodilians, pterosaurs, and dinosaurs.

<span class="mw-page-title-main">Terrestrial locomotion</span> Ability of animals to travel on land

Terrestrial locomotion has evolved as animals adapted from aquatic to terrestrial environments. Locomotion on land raises different problems than that in water, with reduced friction being replaced by the increased effects of gravity.

A facultative biped is an animal that is capable of walking or running on two legs (bipedal), as a response to exceptional circumstances (facultative), while normally walking or running on four limbs or more. In contrast, obligate bipedalism is where walking or running on two legs is the primary method of locomotion. Facultative bipedalism has been observed in several families of lizards and multiple species of primates, including sifakas, capuchin monkeys, baboons, gibbons, gorillas, bonobos and chimpanzees. Different facultatively bipedal species employ different types of bipedalism corresponding to the varying reasons they have for engaging in facultative bipedalism. In primates, bipedalism is often associated with food gathering and transport. In lizards, it has been debated whether bipedal locomotion is an advantage for speed and energy conservation or whether it is governed solely by the mechanics of the acceleration and lizard's center of mass. Facultative bipedalism is often divided into high-speed (lizards) and low-speed (gibbons), but some species cannot be easily categorized into one of these two. Facultative bipedalism has also been observed in cockroaches and some desert rodents.

A limb is a jointed, muscled appendage of a tetrapod vertebrate animal used for weight-bearing, terrestrial locomotion and physical interaction with other objects. The distalmost portion of a limb is known as its extremity. The limbs' bony endoskeleton, known as the appendicular skeleton, is homologous among all tetrapods, who use their limbs for walking, running and jumping, swimming, climbing, grasping, touching and striking.

<span class="mw-page-title-main">Human skeletal changes due to bipedalism</span> Evoltionary changes to the human skeleton as a consequence of bipedalism

The evolution of human bipedalism, which began in primates approximately four million years ago, or as early as seven million years ago with Sahelanthropus, or approximately twelve million years ago with Danuvius guggenmosi, has led to morphological alterations to the human skeleton including changes to the arrangement, shape, and size of the bones of the foot, hip, knee, leg, and the vertebral column. These changes allowed for the upright gait to be overall more energy efficient in comparison to quadrupeds. The evolutionary factors that produced these changes have been the subject of several theories that correspond with environmental changes on a global scale.

<span class="mw-page-title-main">Comparative foot morphology</span> Comparative anatomy

Comparative foot morphology involves comparing the form of distal limb structures of a variety of terrestrial vertebrates. Understanding the role that the foot plays for each type of organism must take account of the differences in body type, foot shape, arrangement of structures, loading conditions and other variables. However, similarities also exist among the feet of many different terrestrial vertebrates. The paw of the dog, the hoof of the horse, the manus (forefoot) and pes (hindfoot) of the elephant, and the foot of the human all share some common features of structure, organization and function. Their foot structures function as the load-transmission platform which is essential to balance, standing and types of locomotion.

The endurance running hypothesis is a series of conjectures which presume humans evolved anatomical and physiological adaptations to run long distances and, more strongly, that "running is the only known behavior that would account for the different body plans in Homo as opposed to apes or australopithecines".

<span class="mw-page-title-main">Spinal locomotion</span>

Spinal locomotion results from intricate dynamic interactions between a central program in lower thoracolumbar spine and proprioceptive feedback from body in the absence of central control by brain as in complete spinal cord injury (SCI). Following SCI, the spinal circuitry below the lesion site does not become silent; rather, it continues to maintain active and functional neuronal properties, although in a modified manner.

Human locomotion is considered to take two primary forms: walking and running. In contrast, many quadrupeds have three distinct forms of locomotion: walk, trot, and gallop. Walking is a form of locomotion defined by a double support phase when both feet are on the ground at the same time. Running is a form of locomotion that does not have this double support phase.

<span class="mw-page-title-main">Arm swing in human locomotion</span>

Arm swing in human bipedal walking is a natural motion wherein each arm swings with the motion of the opposing leg. Swinging arms in an opposing direction with respect to the lower limb reduces the angular momentum of the body, balancing the rotational motion produced during walking. Although such pendulum-like motion of arms is not essential for walking, recent studies point that arm swing improves the stability and energy efficiency in human locomotion. Those positive effects of arm swing have been utilized in sports, especially in racewalking and sprinting.

A (bipedal) gait cycle is the time period or sequence of events or movements during locomotion in which one foot contacts the ground to when that same foot again contacts the ground, and involves propulsion of the centre of gravity in the direction of motion. A gait cycle usually involves co-operative movements of both the left and right legs and feet. A single gait cycle is also known as a stride.

The study of animal locomotion is a branch of biology that investigates and quantifies how animals move.

<span class="mw-page-title-main">Interlimb coordination</span> Coordination of the left and right limbs

Interlimb coordination is the coordination of the left and right limbs. It could be classified into two types of action: bimanual coordination and hands or feet coordination. Such coordination involves various parts of the nervous system and requires a sensory feedback mechanism for the neural control of the limbs. A model can be used to visualize the basic features, the control centre of locomotor movements, and the neural control of interlimb coordination. This coordination mechanism can be altered and adapted for better performance during locomotion in adults and for the development of motor skills in infants. The adaptive feature of interlimb coordination can also be applied to the treatment for CNS damage from stroke and the Parkinson's disease in the future.

References

  1. Hildebrand, Milton (1 December 1989). "The Quadrupedal Gaits of Vertebrates: The timing of leg movements relates to balance, body shape, agility, speed, and energy expenditure". BioScience. 39 (11): 766. doi:10.2307/1311182. JSTOR   1311182.
  2. Tasch, U.; Moubarak, P.; Tang, W.; Zhu, L.; Lovering, R. M.; Roche, J.; Bloch, R. J. (2008). "An Instrument That Simultaneously Measures Spatiotemporal Gait Parameters and Ground Reaction Forces of Locomoting Rats". Volume 2: Automotive Systems; Bioengineering and Biomedical Technology; Computational Mechanics; Controls; Dynamical Systems. pp. 45–49. doi:10.1115/ESDA2008-59085. ISBN   978-0-7918-4836-4.
  3. Strauss R, Heisenberg M (August 1990). "Coordination of legs during straight walking and turning in Drosophila melanogaster". Journal of Comparative Physiology A. 167 (3): 403–12. doi:10.1007/BF00192575. PMID   2121965. S2CID   12965869.
  4. DeAngelis BD, Zavatone-Veth JA, Clark DA (June 2019). "Drosophila". eLife. 8. doi: 10.7554/eLife.46409 . PMC   6598772 . PMID   31250807.
  5. Ayali A, Borgmann A, Buschges A, Cousin-Fuchs E, Daun-Gruhn S, Holmes P (2015). "The comparative investigation of the stick insect and cockroach models in study of animal locomotion". Current Opinion in Insect Science (12): 1–10. doi:10.1016/j.cois.2015.07.004.