Animal locomotion on the water surface

Last updated
Water striders can move on the surface of water. Wasserlaufer bei der Paarung crop.jpg
Water striders can move on the surface of water.

Animal locomotion on the surface layer of water is the study of animal locomotion in the case of small animals that live on the surface layer of water, relying on surface tension to stay afloat.

Contents

There are two types of animal locomotion on water, determined by the ratio of the animal's weight to the water's surface tension: those whose weight is supported by the surface tension at rest, and can therefore easily remain on the water's surface without much exertion, and those whose weight is not supported by the water's surface tension at rest, and must therefore exert additional motion in a direction parallel to the water's surface in order to remain above it. A creature such as the basilisk lizard, often dubbed the 'Jesus lizard', has a weight which is larger than the surface tension can support, and is widely known for running across the surface of water. Another example, the western grebe, performs a mating ritual that includes running across the surface of water. [1]

Surface living animals such as the water strider typically have hydrophobic feet covered in small hairs that prevent the feet from breaking the surface and becoming wet. Another insect known to walk on the water surface is the ant species Polyrhachis sokolova . The pygmy gecko ( Coleodactylus amazonicus ), due to its small size and hydrophobic skin, is also able to walk on the water surface. [2]

According to biophysicist David L. Hu, there are at least 342 species of water striders. [3] As striders increase in size, their legs become proportionately longer, with Gigantometra gigas having a length of over 20 cm requiring a surface tension force of about 40  millinewtons.

Water striders generate thrust by shedding vortices in the water: a series of U-shaped vortex filaments is created during the power stroke. The two free ends of the "U" are attached to the water surface. These vortices transfer enough (backward) momentum to the water to propel the animal forwards (note that some momentum is transferred by capillary waves; see Denny's paradox for a more detailed discussion.)

Meniscus climbing

To pass from the water surface to land, a water-walking insect must contend with the slope of the meniscus at the water's edge. Many such insects are unable to climb this meniscus using their usual propulsion mechanism.

David Hu and coworker John W. M. Bush have shown that such insects climb meniscuses by assuming a fixed body posture. This deforms the water surface and generates capillary forces that propels the insect up the slope without moving its appendages.

Hu and Bush conclude that meniscus climbing is an unusual means of propulsion in that the insect propels itself in a quasi-static configuration, without moving its appendages. Biolocomotion is generally characterized by the transfer of muscular strain energy to the kinetic and gravitational potential energy of the creature, and the kinetic energy of the suspending fluid. In contrast, meniscus climbing has a different energy pathway: by deforming the free surface, the insect converts muscular strain to the surface energy that powers its ascent. [4]

Marangoni propulsion

Many insects, including some terrestrial insects, can release a surfactant and propel themselves using the Marangoni effect. Hu and Bush report that Microvelia can attain a peak speed of 17 cm/s, which is twice its peak walking speed, using Marangoni propulsion.

Marangoni propulsion by a wetting arthropod is precisely analogous to a soap boat but the situation for insects such as water striders is more complex. Hu and Bush state that "for nonwetting arthropods, the transfer of chemical to kinetic energy is more subtle, as the Marangoni stress must be communicated across the creature’s complex surface layer".

Sailing

Velella moves by sailing. Velella Bae an Anaon.jpg
Velella moves by sailing.

Velella , the by-the-wind sailor, is a cnidarian with no means of propulsion other than sailing. A small rigid sail projects into the air and catches the wind. Velella sails always align along the direction of the wind where the sail may act as an aerofoil, so that the animals tend to sail downwind at a small angle to the wind. [5]

See also

Related Research Articles

<span class="mw-page-title-main">Walking</span> Gait of locomotion among legged animals

Walking is one of the main gaits of terrestrial locomotion among legged animals. Walking is typically slower than running and other gaits. Walking is defined by an "inverted pendulum" gait in which the body vaults over the stiff limb or limbs with each step. This applies regardless of the usable number of limbs—even arthropods, with six, eight, or more limbs, walk. In humans, walking has health benefits including improved mental health and reduced risk of cardiovascular disease and death.

<span class="mw-page-title-main">Propulsion</span> Means of creating force leading to movement

Propulsion is the generation of force by any combination of pushing or pulling to modify the translational motion of an object, which is typically a rigid body but may also concern a fluid. The term is derived from two Latin words: pro, meaning before or forward; and pellere, meaning to drive. A propulsion system consists of a source of mechanical power, and a propulsor.

<span class="mw-page-title-main">Gait</span> Pattern of movement of the limbs of animals

Gait is the pattern of movement of the limbs of animals, including humans, during locomotion over a solid substrate. Most animals use a variety of gaits, selecting gait based on speed, terrain, the need to maneuver, and energetic efficiency. Different animal species may use different gaits due to differences in anatomy that prevent use of certain gaits, or simply due to evolved innate preferences as a result of habitat differences. While various gaits are given specific names, the complexity of biological systems and interacting with the environment make these distinctions "fuzzy" at best. Gaits are typically classified according to footfall patterns, but recent studies often prefer definitions based on mechanics. The term typically does not refer to limb-based propulsion through fluid mediums such as water or air, but rather to propulsion across a solid substrate by generating reactive forces against it.

<span class="mw-page-title-main">Surface tension</span> Tendency of a liquid surface to shrink to reduce surface area

Surface tension is the tendency of liquid surfaces at rest to shrink into the minimum surface area possible. Surface tension is what allows objects with a higher density than water such as razor blades and insects to float on a water surface without becoming even partly submerged.

<span class="mw-page-title-main">Flight</span> Process by which an object moves, through an atmosphere or beyond it

Flight or flying is the process by which an object moves through a space without contacting any planetary surface, either within an atmosphere or through the vacuum of outer space. This can be achieved by generating aerodynamic lift associated with gliding or propulsive thrust, aerostatically using buoyancy, or by ballistic movement.

<span class="mw-page-title-main">Gerridae</span> Family of true bugs

The Gerridae are a family of insects in the order Hemiptera, commonly known as water striders, water skeeters, water scooters, water bugs, pond skaters, water skippers, water gliders, water skimmers or puddle flies. Consistent with the classification of the Gerridae as true bugs, gerrids have mouthparts evolved for piercing and sucking, and distinguish themselves by having the unusual ability to walk on water, making them pleuston (surface-living) animals. They are anatomically built to transfer their weight to be able to run on top of the water's surface. As a result, one could likely find water striders present in any pond, river, or lake. Over 1,700 species of gerrids have been described, 10% of them being marine.

<span class="mw-page-title-main">Denny's paradox</span> Question of animal locomotion on water

In biology, Denny's paradox refers to the apparent impossibility of surface-dwelling animals such as the water strider generating enough propulsive force to move. It is named after biologist Mark Denny, and relates to animal locomotion on the surface layer of water.

<span class="mw-page-title-main">Animal locomotion</span> Self-propulsion by an animal

Animal locomotion, in ethology, is any of a variety of methods that animals use to move from one place to another. Some modes of locomotion are (initially) self-propelled, e.g., running, swimming, jumping, flying, hopping, soaring and gliding. There are also many animal species that depend on their environment for transportation, a type of mobility called passive locomotion, e.g., sailing, kiting (spiders), rolling or riding other animals (phoresis).

Robot locomotion is the collective name for the various methods that robots use to transport themselves from place to place.

<i>Velella</i> Species of cnidarian

Velella is a monospecific genus of hydrozoa in the Porpitidae family. Its only known species is Velella velella, a cosmopolitan free-floating hydrozoan that lives on the surface of the open ocean. It is commonly known by the names sea raft, by-the-wind sailor, purple sail, little sail, or simply Velella.

<span class="mw-page-title-main">Fish locomotion</span> Ways that fish move around

Fish locomotion is the various types of animal locomotion used by fish, principally by swimming. This is achieved in different groups of fish by a variety of mechanisms of propulsion, most often by wave-like lateral flexions of the fish's body and tail in the water, and in various specialised fish by motions of the fins. The major forms of locomotion in fish are:

<span class="mw-page-title-main">Allometry</span> Study of the relationship of body size to shape, anatomy, physiology, and behavior

Allometry is the study of the relationship of body size to shape, anatomy, physiology and behaviour, first outlined by Otto Snell in 1892, by D'Arcy Thompson in 1917 in On Growth and Form and by Julian Huxley in 1932.

<span class="mw-page-title-main">Flying and gliding animals</span> Animals that have evolved aerial locomotion

A number of animals are capable of aerial locomotion, either by powered flight or by gliding. This trait has appeared by evolution many times, without any single common ancestor. Flight has evolved at least four times in separate animals: insects, pterosaurs, birds, and bats. Gliding has evolved on many more occasions. Usually the development is to aid canopy animals in getting from tree to tree, although there are other possibilities. Gliding, in particular, has evolved among rainforest animals, especially in the rainforests in Asia where the trees are tall and widely spaced. Several species of aquatic animals, and a few amphibians and reptiles have also evolved this gliding flight ability, typically as a means of evading predators.

<span class="mw-page-title-main">Terrestrial locomotion</span> Ability of animals to travel on land

Terrestrial locomotion has evolved as animals adapted from aquatic to terrestrial environments. Locomotion on land raises different problems than that in water, with reduced friction being replaced by the increased effects of gravity.

<span class="mw-page-title-main">Aquatic locomotion</span>

Aquatic locomotion or swimming is biologically propelled motion through a liquid medium. The simplest propulsive systems are composed of cilia and flagella. Swimming has evolved a number of times in a range of organisms including arthropods, fish, molluscs, amphibians, reptiles, birds, and mammals.

<span class="mw-page-title-main">Robostrider</span>

Robostrider is a self-propelled robot which uses similar mechanisms to real water striders in order to glide along the surface of the water. It was developed at Cambridge, Massachusetts.

<span class="mw-page-title-main">John Dabiri</span> Nigerian-American engineer & academic

John Oluseun Dabiri is a Nigerian-American aeronautics engineer and the Centennial Chair Professor at the California Institute of Technology (Caltech), with appointments in the Graduate Aerospace Laboratories (GALCIT) and Mechanical Engineering. His research focuses on unsteady fluid mechanics and flow physics, with particular emphasis on topics relevant to biology, energy, and the environment. He is best known for his research of the hydrodynamics of jellyfish propulsion and the design of a vertical-axis wind farm adapted from schooling fish. He is the director of the Biological Propulsion Laboratory, which examines fluid transport with applications in aquatic locomotion, fluid dynamic energy conversion, and cardiac flows, as well as applying theoretical methods in fluid dynamics and concepts of optimal vortex formation.

Flotation of flexible objects is a phenomenon in which the bending of a flexible material allows an object to displace a greater amount of fluid than if it were completely rigid. This ability to displace more fluid translates directly into an ability to support greater loads, giving the flexible structure an advantage over a similarly rigid one. Inspiration to study the effects of elasticity are taken from nature, where plants, such as black pepper, and animals living at the water surface have evolved to take advantage of the load-bearing benefits elasticity imparts.

Surface tension is one of the areas of interest in biomimetics research. Surface tension forces will only begin to dominate gravitational forces below length scales on the order of the fluid's capillary length, which for water is about 2 millimeters. Because of this scaling, biomimetic devices that utilize surface tension will generally be very small, however there are many ways in which such devices could be used.

<span class="mw-page-title-main">Webbed foot</span> Animal feet with non-pathogenic interdigital webbing

The webbed foot is a specialized limb with interdigital membranes (webbings) that aids in aquatic locomotion, present in a variety of tetrapod vertebrates. This adaptation is primarily found in semiaquatic species, and has convergently evolved many times across vertebrate taxa.

References

  1. "Aechmophorus occidentalis western grebe". Animal Diversity Web. University of Michigan Museum of Biology. Retrieved 2014-01-02.
  2. Walker, Matt (13 October 2009). "Lizards filmed 'walking on water'". BBC News.
  3. Hu, David L.; Chan, Brian; Bush, John W. M. (2003). "The hydrodynamics of water strider locomotion". Nature . Nature Publishing Group. 424 (August): 663–6. Bibcode:2003Natur.424..663H. doi:10.1038/nature01793. PMID   12904790. S2CID   4362791.
  4. Hu, David L.; Bush, John W. M. (2005). "Meniscus-climbing insects". Nature . Nature Publishing Group. 437 (September): 733–736. Bibcode:2005Natur.437..733H. doi:10.1038/nature03995. PMID   16193052. S2CID   9854930.
  5. McNeill Alexander, R. (2002). Principles of Animal Locomotion. Princeton University Press. ISBN   0-691-08678-8.