Flying and gliding animals

Last updated

Greylag geese (Anser anser). Birds are one of only four taxonomic groups to have evolved powered flight. Greylag Geese (Anser anser) in flight, Cley, Norfolk 1700.jpg
Greylag geese ( Anser anser ). Birds are one of only four taxonomic groups to have evolved powered flight.

A number of animals are capable of aerial locomotion, either by powered flight or by gliding. This trait has appeared by evolution many times, without any single common ancestor. Flight has evolved at least four times in separate animals: insects, pterosaurs, birds, and bats. Gliding has evolved on many more occasions. Usually the development is to aid canopy animals in getting from tree to tree, although there are other possibilities. Gliding, in particular, has evolved among rainforest animals, especially in the rainforests in Asia (most especially Borneo) where the trees are tall and widely spaced. Several species of aquatic animals, and a few amphibians and reptiles have also evolved this gliding flight ability, typically as a means of evading predators.

Contents

Types

Animal aerial locomotion can be divided into two categories: powered and unpowered. In unpowered modes of locomotion, the animal uses aerodynamic forces exerted on the body due to wind or falling through the air. In powered flight, the animal uses muscular power to generate aerodynamic forces to climb or to maintain steady, level flight. Those who can find air that is rising faster than they are falling can gain altitude by soaring.

Unpowered

These modes of locomotion typically require an animal start from a raised location, converting that potential energy into kinetic energy and using aerodynamic forces to control trajectory and angle of descent. Energy is continually lost to drag without being replaced, thus these methods of locomotion have limited range and duration.

Powered flight

Powered flight has evolved at least four times: first in the insects, then in pterosaurs, next in birds, and last in bats. Studies on theropod dinosaurs do suggest multiple (at least 3) independent acquisitions of powered flight however, [1] [2] and a recent study proposes independent acquisitions amidst the different bat clades as well. [3] Powered flight uses muscles to generate aerodynamic force, which allows the animal to produce lift and thrust. The animal may ascend without the aid of rising air.

Externally powered

Ballooning and soaring are not powered by muscle, but rather by external aerodynamic sources of energy: the wind and rising thermals, respectively. Both can continue as long as the source of external power is present. Soaring is typically only seen in species capable of powered flight, as it requires extremely large wings.

Many species will use multiple of these modes at various times; a hawk will use powered flight to rise, then soar on thermals, then descend via free-fall to catch its prey.

Evolution and ecology

Gliding and parachuting

While gliding occurs independently from powered flight, [4] it has some ecological advantages of its own as it is the simplest form of flight. [5] Gliding is a very energy-efficient way of travelling from tree to tree. Although moving through the canopy running along the branches may be less energetically demanding, the faster transition between trees allows for greater foraging rates in a particular patch. [6] Glide ratios can be dependent on size and current behavior. Higher foraging rates are supported by low glide ratios as smaller foraging patches require less gliding time over shorter distances and greater amounts of food can be acquired in a shorter time period. [6] Low ratios are not as energy efficient as the higher ratios, [5] but an argument made is that many gliding animals eat low energy foods such as leaves and are restricted to gliding because of this, whereas flying animals eat more high energy foods such as fruits, nectar, and insects. [7] Mammals tend to rely on lower glide ratios to increase the amount of time foraging for lower energy food. [8] An equilibrium glide, achieving a constant airspeed and glide angle, is harder to obtain as animal size increases. Larger animals need to glide from much higher heights and longer distances to make it energetically beneficial. [9] Gliding is also very suitable for predator avoidance, allowing for controlled targeted landings to safer areas. [10] [9] In contrast to flight, gliding has evolved independently many times (more than a dozen times among extant vertebrates); however these groups have not radiated nearly as much as have groups of flying animals.

Worldwide, the distribution of gliding animals is uneven, as most inhabit rain forests in Southeast Asia. (Despite seemingly suitable rain forest habitats, few gliders are found in India or New Guinea and none in Madagascar.) Additionally, a variety of gliding vertebrates are found in Africa, a family of hylids (flying frogs) lives in South America and several species of gliding squirrels are found in the forests of northern Asia and North America. [11] Various factors produce these disparities. In the forests of Southeast Asia, the dominant canopy trees (usually dipterocarps) are taller than the canopy trees of the other forests. Forest structure and distance between trees are influential in the development of gliding within varying species. [8] A higher start provides a competitive advantage of further glides and farther travel. Gliding predators may more efficiently search for prey. The lower abundance of insect and small vertebrate prey for carnivorous animals (such as lizards) in Asian forests may be a factor. [11] In Australia, many mammals (and all mammalian gliders) possess, to some extent, prehensile tails. Globally, smaller gliding species tend to have feather-like tails and larger species have fur covered round bushy tails, [10] but smaller animals tend to rely on parachuting rather than developing gliding membranes. [9] The gliding membranes, patagium, are classified in the 4 groups of propatagium, digipatagium, plagiopatagium and uropatagium. These membranes consist of two tightly bounded layers of skin connected by muscles and connective tissue between the fore and hind limbs. [10]

Powered flight evolution

Analogous flying adaptions in vertebrates:
pterosaur (Pterosauria)
bat (Chiroptera)
bird (Aves) Homology.jpg
Analogous flying adaptions in vertebrates:
  1. pterosaur (Pterosauria)
  2. bat (Chiroptera)
  3. bird (Aves)

Powered flight has evolved unambiguously only four times—birds, bats, pterosaurs, and insects (though see above for possible independent acquisitions within bird and bat groups). In contrast to gliding, which has evolved more frequently but typically gives rise to only a handful of species, all three extant groups of powered flyers have a huge number of species, suggesting that flight is a very successful strategy once evolved. Bats, after rodents, have the most species of any mammalian order, about 20% of all mammalian species. [12] Birds have the most species of any class of terrestrial vertebrates. Finally, insects (most of which fly at some point in their life cycle) have more species than all other animal groups combined.

The evolution of flight is one of the most striking and demanding in animal evolution, and has attracted the attention of many prominent scientists and generated many theories. Additionally, because flying animals tend to be small and have a low mass (both of which increase the surface-area-to-mass ratio), they tend to fossilize infrequently and poorly compared to the larger, heavier-boned terrestrial species they share habitat with. Fossils of flying animals tend to be confined to exceptional fossil deposits formed under highly specific circumstances, resulting in a generally poor fossil record, and a particular lack of transitional forms. Furthermore, as fossils do not preserve behavior or muscle, it can be difficult to discriminate between a poor flyer and a good glider.

Insects were the first to evolve flight, approximately 350 million years ago. The developmental origin of the insect wing remains in dispute, as does the purpose prior to true flight. One suggestion is that wings initially evolved from tracheal gill structures and were used to catch the wind for small insects that live on the surface of the water, while another is that they evolved from paranotal lobes or leg structures and gradually progressed from parachuting, to gliding, to flight for originally arboreal insects. [13]

Pterosaurs were the next to evolve flight, approximately 228 million years ago. These reptiles were close relatives of the dinosaurs, and reached enormous sizes, with some of the last forms being the largest flying animals ever to inhabit the Earth, having wingspans of over 9.1 m (30 ft). However, they spanned a large range of sizes, down to a 250 mm (10 in) wingspan in Nemicolopterus .

Birds have an extensive fossil record, along with many forms documenting both their evolution from small theropod dinosaurs and the numerous bird-like forms of theropod which did not survive the mass extinction at the end of the Cretaceous. Indeed, Archaeopteryx is arguably the most famous transitional fossil in the world, both due to its mix of reptilian and avian anatomy and the luck of being discovered only two years after Darwin's publication of On the Origin of Species . However, the ecology of this transition is considerably more contentious, with various scientists supporting either a "trees down" origin (in which an arboreal ancestor evolved gliding, then flight) or a "ground up" origin (in which a fast-running terrestrial ancestor used wings for a speed boost and to help catch prey). It may also have been a non-lnear process, as several non-avian dinosaurs seem to have independently acquired powered flight. [14] [15]

Bats are the most recent to evolve (about 60 million years ago), most likely from a fluttering ancestor, [16] though their poor fossil record has hindered more detailed study.

Only a few animals are known to have specialised in soaring: the larger of the extinct pterosaurs, and some large birds. Powered flight is very energetically expensive for large animals, but for soaring their size is an advantage, as it allows them a low wing loading, that is a large wing area relative to their weight, which maximizes lift. [17] Soaring is very energetically efficient.

Biomechanics

Gliding and parachuting

During a free-fall with no aerodynamic forces, the object accelerates due to gravity, resulting in increasing velocity as the object descends. During parachuting, animals use the aerodynamic forces on their body to counteract the force or gravity. Any object moving through air experiences a drag force that is proportion to surface area and to velocity squared, and this force will partially counter the force of gravity, slowing the animal's descent to a safer speed. If this drag is oriented at an angle to the vertical, the animal's trajectory will gradually become more horizontal, and it will cover horizontal as well as vertical distance. Smaller adjustments can allow turning or other maneuvers. This can allow a parachuting animal to move from a high location on one tree to a lower location on another tree nearby. Specifically in gliding mammals, there are 3 types of gliding paths respectively being S glide, J glide, and "straight-shaped" glides where species either gain altitude post launch then descend, rapidly decrease height before gliding, and maintaining a constant angled descent. [10]

During gliding, lift plays an increased role. Like drag, lift is proportional to velocity squared. Gliding animals will typically leap or drop from high locations such as trees, just as in parachuting, and as gravitational acceleration increases their speed, the aerodynamic forces also increase. Because the animal can utilize lift and drag to generate greater aerodynamic force, it can glide at a shallower angle than parachuting animals, allowing it to cover greater horizontal distance in the same loss of altitude, and reach trees further away. Successful flights for gliding animals are achieved through 5 steps: preparation, launch, glide, braking, and landing. Gliding species are better able to control themselves mid-air, with the tail acting as a rudder, making it capable to pull off banking movements or U-turns during flight. [10] During landing, arboreal mammals will extend their fore and hind limbs in front of itself to brace for landing and to trap air in order to maximize air resistance and lower impact speed. [10]

Powered flight

Large milkweed bug flying, repeated at one fifteenth speed.

Unlike most air vehicles, in which the objects that generate lift (wings) and thrust (engine or propeller) are separate and the wings remain fixed, flying animals use their wings to generate both lift and thrust by moving them relative to the body. This has made the flight of organisms considerably harder to understand than that of vehicles, as it involves varying speeds, angles, orientations, areas, and flow patterns over the wings.

A bird or bat flying through the air at a constant speed moves its wings up and down (usually with some fore-aft movement as well). Because the animal is in motion, there is some airflow relative to its body which, combined with the velocity of its wings, generates a faster airflow moving over the wing. This will generate lift force vector pointing forwards and upwards, and a drag force vector pointing rearwards and upwards. The upwards components of these counteract gravity, keeping the body in the air, while the forward component provides thrust to counteract both the drag from the wing and from the body as a whole. Pterosaur flight likely worked in a similar manner, though no living pterosaurs remain for study.

Insect flight is considerably different, due to their small size, rigid wings, and other anatomical differences. Turbulence and vortices play a much larger role in insect flight, making it even more complex and difficult to study than the flight of vertebrates. [18] There are two basic aerodynamic models of insect flight. Most insects use a method that creates a spiralling leading edge vortex. [19] [20] Some very small insects use the fling-and-clap or Weis-Fogh mechanism in which the wings clap together above the insect's body and then fling apart. As they fling open, the air gets sucked in and creates a vortex over each wing. This bound vortex then moves across the wing and, in the clap, acts as the starting vortex for the other wing. Circulation and lift are increased, at the price of wear and tear on the wings. [19] [20]

Limits and extremes

Flying and soaring

Comparison of Quetzalcoatlus northropi with a Cessna 172 light aircraft Comparison of Quetzalcoatlus and Cessna 172.svg
Comparison of Quetzalcoatlus northropi with a Cessna 172 light aircraft
Airborne flying squirrel. Flying squirrel in a tree.jpg
Airborne flying squirrel.

Gliding and parachuting

Flying animals

Extant

A bee in flight. Beeinflightfromfront.jpg
A bee in flight.

Insects

  • Pterygota: The first of all animals to evolve flight, they are also the only invertebrates that have evolved flight. As they comprise almost all insects, the species are too numerous to list here. Insect flight is an active research field.
Birds are a successful group of flying vertebrate. Flying mallard duck - female.jpg
Birds are a successful group of flying vertebrate.

Birds

  • Birds (flying, soaring) – Most of the approximately 10,000 living species can fly (flightless birds are the exception). Bird flight is one of the most studied forms of aerial locomotion in animals. See List of soaring birds for birds that can soar as well as fly.
Townsends's big-eared bat, (Corynorhinus townsendii) displaying the "hand wing" Big-eared-townsend-fledermaus.jpg
Townsends's big-eared bat, (Corynorhinus townsendii) displaying the "hand wing"

Mammals

  • Bats. There are approximately 1,240 bat species, representing about 20% of all classified mammal species. [33] Most bats are nocturnal and many feed on insects while flying at night, using echolocation to home in on their prey. [34]

Extinct

Pterosaurs included the largest known flying animals Coloborhynchus piscator jconway.jpg
Pterosaurs included the largest known flying animals

Pterosaurs

  • Pterosaurs were the first flying vertebrates, and are generally agreed to have been sophisticated flyers. They had large wings formed by a patagium stretching from the torso to a dramatically lengthened fourth finger. There were hundreds of species, most of which are thought to have been intermittent flappers, and many soarers. The largest known flying animals are pterosaurs.

Non-avian dinosaurs

  • Theropods (gliding and flying). There were several species of theropod dinosaur thought to be capable of gliding or flying, that are not classified as birds (though they are closely related). Some species ( Microraptor gui, Microraptor zhaoianus, and Changyuraptor ) have been found that were fully feathered on all four limbs, giving them four 'wings' that they are believed to have used for gliding or flying. A recent study indicates that flight may have been acquired independently in various different lineages [2] though it may have only evolved in theropods of the Avialae.

Gliding animals

Extant

Insects

  • Gliding bristletails. Directed aerial gliding descent is found in some tropical arboreal bristletails, an ancestrally wingless sister taxa to the winged insects. The bristletails median caudal filament is important for the glide ratio and gliding control [35]
  • Gliding ants. The flightless workers of these insects have secondarily gained some capacity to move through the air. Gliding has evolved independently in a number of arboreal ant species from the groups Cephalotini, Pseudomyrmecinae, and Formicinae (mostly Camponotus ). All arboreal dolichoderines and non-cephalotine myrmicines except Daceton armigerum do not glide. Living in the rainforest canopy like many other gliders, gliding ants use their gliding to return to the trunk of the tree they live on should they fall or be knocked off a branch. Gliding was first discovered for Cephalotes atreus in the Peruvian rainforest. Cephalotes atreus can make 180 degree turns, and locate the trunk using visual cues, succeeding in landing 80% of the time. [36] Unique among gliding animals, Cephalotini and Pseudomyrmecinae ants glide abdomen first, the Forminicae however glide in the more conventional head first manner. [37]
  • Gliding immature insects. The wingless immature stages of some insect species that have wings as adults may also show a capacity to glide. These include some species of cockroach, mantis, katydid, stick insect and true bug.

Spiders

Neon flying squid Ommastrephes bartramii (Neon flying squid), Northern Hawaiian waters.jpg
Neon flying squid

Molluscs

  • Flying squid. Several oceanic squids of the family Ommastrephidae, such as the Pacific flying squid, will leap out of the water to escape predators, an adaptation similar to that of flying fish. [38] Smaller squids will fly in shoals, and have been observed to cover distances as long as 50 metres (160 ft). Small fins towards the back of the mantle do not produce much lift, but do help stabilize the motion of flight. They exit the water by expelling water out of their funnel, indeed some squid have been observed to continue jetting water while airborne providing thrust even after leaving the water. This may make flying squid the only animals with jet-propelled aerial locomotion. [39] The neon flying squid has been observed to glide for distances over 30 metres (100 ft), at speeds of up to 11.2 metres per second (37 ft/s). [40]
Band-winged flying fish, with enlarged pectoral fins Band-wing flyingfish.jpg
Band-winged flying fish, with enlarged pectoral fins

Fish

  • Flying fish. There are over 50 species of flying fish belonging to the family Exocoetidae. They are mostly marine fishes of small to medium size. The largest flying fish can reach lengths of 45 centimetres (18 in) but most species measure less than 30 cm (12 in) in length. They can be divided into two-winged varieties and four-winged varieties. Before the fish leaves the water it increases its speed to around 30 body lengths per second and as it breaks the surface and is freed from the drag of the water it can be traveling at around 60 kilometres per hour (37 mph). [41] The glides are usually up to 30–50 metres (100–160 ft) in length, but some have been observed soaring for hundreds of metres using the updraft on the leading edges of waves. The fish can also make a series of glides, each time dipping the tail into the water to produce forward thrust. The longest recorded series of glides, with the fish only periodically dipping its tail in the water, was for 45 seconds (Video here [42] ). It has been suggested that the genus Exocoetus is on an evolutionary borderline between flight and gliding. It flaps its large pectoral fins while gliding, but does not use a power strike like flying animals. [43] It has been found that some flying fish can glide as effectively as some flying birds. [44]
  • live bearers
    • Halfbeaks. A group related to the Exocoetidae, one or two hemirhamphid species possess enlarged pectoral fins and show true gliding flight rather than simple leaps. Marshall (1965) reports that Euleptorhamphus viridis can cover 50 metres (160 ft) in two separate hops. [45]
    • Trinidadian guppies have been observed exhibiting a gliding response to escape predator's [46] [47] [48]
  • Freshwater butterflyfish (possibly gliding). Pantodon buchholzi has the ability to jump and possibly glide a short distance. It can move through the air several times the length of its body. While it does this, the fish flaps its large pectoral fins, giving it its common name. [49] However, it is debated whether the freshwater butterfly fish can truly glide, Saidel et al. (2004) argue that it cannot.
  • Freshwater hatchetfish. In the wild, they have been observed jumping out of the water and gliding [50] (although reports of them achieving powered flight has been brought up many times [51] [52] [53] ).
Illustration of Wallace's flying frog in Alfred Russel Wallace's 1869 book The Malay Archipelago Wallace frog.jpg
Illustration of Wallace's flying frog in Alfred Russel Wallace's 1869 book The Malay Archipelago

Amphibians

Gliding has evolved independently in two families of tree frogs, the Old World Rhacophoridae and the New World Hylidae. Within each lineage there are a range of gliding abilities from non-gliding, to parachuting, to full gliding.

Reptiles

Several lizards and snakes are capable of gliding:

  • Gliding Draco lizard Draco takeoff.gif
    Gliding Draco lizard
    Draco lizards. There are 28 species of lizard of the genus Draco , found in Sri Lanka, India, and Southeast Asia. They live in trees, feeding on tree ants, but nest on the forest floor. They can glide for up to 60 metres (200 ft) and over this distance they lose only 10 metres (30 ft) in height. [41] Unusually, their patagium (gliding membrane) is supported on elongated ribs rather than the more common situation among gliding vertebrates of having the patagium attached to the limbs. When extended, the ribs form a semicircle on either side the lizard's body and can be folded to the body like a folding fan.
  • Gliding lacertids. There are two species of gliding lacertid, of the genus Holaspis , found in Africa. They have fringed toes and tail sides and can flatten their bodies for gliding or parachuting. [57]
  • The underside of Kuhl's flying gecko Ptychozoon kuhli. Note the gliding adaptations: flaps of skin on the legs, feet, sides of the body, and on the sides of the head. Ptychozoon kuhli underside cropped.JPG
    The underside of Kuhl's flying gecko Ptychozoon kuhli . Note the gliding adaptations: flaps of skin on the legs, feet, sides of the body, and on the sides of the head.
    Ptychozoon flying geckos. There are six species of gliding gecko, of the genus Ptychozoon , from Southeast Asia. These lizards have small flaps of skin along their limbs, torso, tail, and head that catch the air and enable them to glide. [58]
  • Lupersaurus flying geckos. A possible sister-taxon to Ptychozoon which has similar flaps and folds and also glides. [58]
  • Thecadactylus flying geckos. At least some species of Thecadactylus, such as T. rapicauda, are known to glide. [58]
  • Cosymbotus flying gecko. Similar adaptations to Ptychozoon are found in the two species of the gecko genus Cosymbotus .
  • Chrysopelea snakes. Five species of snake from Southeast Asia, Melanesia, and India. The paradise tree snake of southern Thailand, Malaysia, Borneo, Philippines, and Sulawesi is the most capable glider of those snakes studied. It glides by stretching out its body sideways and opening its ribs so the belly is concave, and by making lateral slithering movements. It can remarkably glide up to 100 metres (330 ft) and make 90 degree turns.

Mammals

Bats are the only freely flying mammals. [59] A few other mammals can glide or parachute; the best known are flying squirrels and flying lemurs.

  • Flying squirrels (subfamily Petauristinae). There are more than 40 living species divided between 14 genera of flying squirrel. Flying squirrels are found in Asia (most species), North America (genus Glaucomys ) and Europe (Siberian flying squirrel). They inhabit tropical, temperate, and Subarctic environments, with the Glaucomys preferring boreal and montane coniferous forests, [60] specifically landing on red spruce (Picea rubens) trees as landing sites; they are known to rapidly climb trees, but take some time to locate a good landing spot. [61] They tend to be nocturnal and are highly sensitive to light and noise. [60] When a flying squirrel wishes to cross to a tree that is further away than the distance possible by jumping, it extends the cartilage spur on its elbow or wrist. This opens out the flap of furry skin (the patagium) that stretches from its wrist to its ankle. It glides spread-eagle and with its tail fluffed out like a parachute, and grips the tree with its claws when it lands. Flying squirrels have been reported to glide over 200 metres (660 ft).
  • Anomalures or scaly-tailed flying squirrels (family Anomaluridae). These brightly coloured African rodents are not squirrels but have evolved to a resemble flying squirrels by convergent evolution. There are seven species, divided in three genera. All but one species have gliding membranes between their front and hind legs. The genus Idiurus contains two particularly small species known as flying mice, but similarly they are not true mice.
  • Colugos or "flying lemurs" (order Dermoptera). There are two species of colugo. Despite their common name, colugos are not lemurs; true lemurs are primates. Molecular evidence suggests that colugos are a sister group to primates; however, some mammalogists suggest they are a sister group to bats. Found in Southeast Asia, the colugo is probably the mammal most adapted for gliding, with a patagium that is as large as geometrically possible. They can glide as far as 70 metres (230 ft) with minimal loss of height. They have the most developed propatagium out of any gliding mammal with a mean launch velocity of approximately 3.7 m/s; [62] the Mayan Colugo has been known to initiate glides without jumping. [10]
  • Sifaka, a type of lemur, and possibly some other primates (possible limited gliding or parachuting). A number of primates have been suggested to have adaptations that allow limited gliding or parachuting: sifakas, indris, galagos and saki monkeys. Most notably, the sifaka, a type of lemur, has thick hairs on its forearms that have been argued to provide drag, and a small membrane under its arms that has been suggested to provide lift by having aerofoil properties. [63] [64]
  • Flying phalangers or wrist-winged gliders (subfamily Petaurinae). Possums [65] [66] [67] [68] [69] [70] [71] [72] [73] found in Australia, and New Guinea. The gliding membranes are hardly noticeable until they jump. On jumping, the animal extends all four legs and stretches the loose folds of skin. The subfamily contains seven species. Of the six species in the genus Petaurus , the sugar glider and the Biak glider are the most common species. The lone species in the genus Gymnobelideus , Leadbeater's possum has only a vestigial gliding membrane.
  • Greater glider (Petauroides volans). The only species of the genus Petauroides of the family Pseudocheiridae. This marsupial is found in Australia, and was originally classed with the flying phalangers, but is now recognised as separate. Its flying membrane only extends to the elbow, rather than to the wrist as in Petaurinae. [74] It has elongated limbs compared to its non-gliding relatives. [10]
  • Feather-tailed possums (family Acrobatidae). This family of marsupials contains two genera, each with one species. The feathertail glider (Acrobates pygmaeus), found in Australia is the size of a very small mouse and is the smallest mammalian glider. The feathertail possum (Distoechurus pennatus) is found in New Guinea, but does not glide. Both species have a stiff-haired feather-like tail.

Extinct

Reptiles

  • Life restoration of the Weigeltisaurid Weigeltisaurus jaekeli from the Late Permian (259-252 million years ago). Weigeltisaurids represent the oldest known gliding vertebrates Weigeltisaurus reconstruction.png
    Life restoration of the Weigeltisaurid Weigeltisaurus jaekeli from the Late Permian (259-252 million years ago). Weigeltisaurids represent the oldest known gliding vertebrates
    Extinct reptiles similar to Draco. There are a number of unrelated extinct lizard-like reptiles with similar "wings" to the Draco lizards. These include the Late Permian Weigeltisauridae, the Triassic Kuehneosauridae and Mecistotrachelos , [75] and the Cretaceous lizard Xianglong . The largest of these, Kuehneosaurus , has a wingspan of 30 centimetres (12 in), and was estimated to be able to glide about 30 metres (100 ft).
  • Sharovipterygidae. These strange reptiles from the Upper Triassic of Kyrgyzstan and Poland unusually had a membrane on their elongated hind limbs, extending their otherwise normal, flying-squirrel-like patagia significantly. The forelimbs are in contrast much smaller. [76]
  • Hypuronector . This bizarre drepanosaur displays limb proportions, particularly the elongated forelimbs, that are consistent with a flying or gliding animal with patagia. [77]

Non-avian dinosaurs

  • Life restoration of Yi qi a gliding scansoriopterygid dinosaur from the Middle Jurassic of China. Yi qi restoration.jpg
    Life restoration of Yi qi a gliding scansoriopterygid dinosaur from the Middle Jurassic of China.
    Scansoriopterygidae is unique among dinosaurs for the development of membranous wings, unlike the feathered airfoils of other theropods. Much like modern anomalures it developed a bony rod to help support the wing, albeit on the wrist and not the elbow.

Fish

Volaticotherids predate bats as mammalian aeronauts by at least 110 million years Volaticotherium Life Reconstruction.png
Volaticotherids predate bats as mammalian aeronauts by at least 110 million years

Mammals

See also

Related Research Articles

<span class="mw-page-title-main">Wing</span> Appendage used for flight

A wing is a type of fin that produces lift while moving through air or some other fluid. Accordingly, wings have streamlined cross-sections that are subject to aerodynamic forces and act as airfoils. A wing's aerodynamic efficiency is expressed as its lift-to-drag ratio. The lift a wing generates at a given speed and angle of attack can be one to two orders of magnitude greater than the total drag on the wing. A high lift-to-drag ratio requires a significantly smaller thrust to propel the wings through the air at sufficient lift.

<span class="mw-page-title-main">Sugar glider</span> Species of Australian marsupial

The sugar glider is a small, omnivorous, arboreal, and nocturnal gliding possum. The common name refers to its predilection for sugary foods such as sap and nectar and its ability to glide through the air, much like a flying squirrel. They have very similar habits and appearance to the flying squirrel, despite not being closely related—an example of convergent evolution. The scientific name, Petaurus breviceps, translates from Latin as "short-headed rope-dancer", a reference to their canopy acrobatics.

<span class="mw-page-title-main">Convergent evolution</span> Independent evolution of similar features

Convergent evolution is the independent evolution of similar features in species of different periods or epochs in time. Convergent evolution creates analogous structures that have similar form or function but were not present in the last common ancestor of those groups. The cladistic term for the same phenomenon is homoplasy. The recurrent evolution of flight is a classic example, as flying insects, birds, pterosaurs, and bats have independently evolved the useful capacity of flight. Functionally similar features that have arisen through convergent evolution are analogous, whereas homologous structures or traits have a common origin but can have dissimilar functions. Bird, bat, and pterosaur wings are analogous structures, but their forelimbs are homologous, sharing an ancestral state despite serving different functions.

<span class="mw-page-title-main">Flight</span> Process by which an object moves, through an atmosphere or beyond it

Flight or flying is the process by which an object moves through a space without contacting any planetary surface, either within an atmosphere or through the vacuum of outer space. This can be achieved by generating aerodynamic lift associated with gliding or propulsive thrust, aerostatically using buoyancy, or by ballistic movement.

<span class="mw-page-title-main">Flying squirrel</span> Tribe of mammals

Flying squirrels are a tribe of 50 species of squirrels in the family Sciuridae. Despite their name, they are not in fact capable of full flight in the same way as birds or bats, but they are able to glide from one tree to another with the aid of a patagium, a furred skin membrane that stretches from wrist to ankle. Their long tails also provide stability as they glide. Anatomically they are very similar to other squirrels with a number of adaptations to suit their lifestyle; their limb bones are longer and their hand bones, foot bones, and distal vertebrae are shorter. Flying squirrels are able to steer and exert control over their glide path with their limbs and tail.

<span class="mw-page-title-main">Northern flying squirrel</span> Species of rodent

The northern flying squirrel is one of three species of the genus Glaucomys, the only flying squirrels found in North America. They are found in coniferous and mixed coniferous forests across much of Canada, from Alaska to Nova Scotia, and south to the mountains of North Carolina and west to Utah in the United States. They are light brown with pale underparts and grow to a length of 25 to 37 cm. They are proficient gliders but uncoordinated walkers on the ground. They feed on a variety of plant material as well as tree sap, fungi, insects, carrion, bird eggs and nestlings. They mostly breed once a year in a cavity lined with lichen or other soft material. Except when they have young, they change nests frequently, and in winter a number of individuals may huddle together in a shared nest. Unlike most members of their family, flying squirrels are strictly nocturnal.

<span class="mw-page-title-main">Anomalure</span> Family of rodents

The Anomaluridae are a family of rodents found in central Africa. They are known as anomalures or scaly-tailed squirrels. The six extant species are classified into two genera.

<span class="mw-page-title-main">Squirrel glider</span> Species of marsupial

The squirrel glider is a nocturnal gliding possum. The squirrel glider is one of the wrist-winged gliders of the genus Petaurus.

<span class="mw-page-title-main">Animal locomotion</span> Self-propulsion by an animal

Animal locomotion, in ethology, is any of a variety of methods that animals use to move from one place to another. Some modes of locomotion are (initially) self-propelled, e.g., running, swimming, jumping, flying, hopping, soaring and gliding. There are also many animal species that depend on their environment for transportation, a type of mobility called passive locomotion, e.g., sailing, kiting (spiders), rolling or riding other animals (phoresis).

Robot locomotion is the collective name for the various methods that robots use to transport themselves from place to place.

<span class="mw-page-title-main">Bird flight</span> Aerial locomotion in avian dinosaurs

Bird flight is the primary mode of locomotion used by most bird species in which birds take off and fly. Flight assists birds with feeding, breeding, avoiding predators, and migrating.

<span class="mw-page-title-main">Patagium</span> Membranous structure that assists an animal in gliding or flight

The patagium is a membranous body part that assists an animal in obtaining lift when gliding or flying. The structure is found in extant and extinct groups of flying and gliding animals including bats, birds, some dromaeosaurs, pterosaurs, gliding mammals, some flying lizards, and flying frogs. The patagium that stretches between an animal's hind limbs is called the uropatagium or the interfemoral membrane.

<span class="mw-page-title-main">Origin of avian flight</span> Evolution of birds from non-flying ancestors

Around 350 BCE, Aristotle and other philosophers of the time attempted to explain the aerodynamics of avian flight. Even after the discovery of the ancestral bird Archaeopteryx which lived over 150 million years ago, debates still persist regarding the evolution of flight. There are three leading hypotheses pertaining to avian flight: Pouncing Proavis model, Cursorial model, and Arboreal model.

Gliding flight is heavier-than-air flight without the use of thrust; the term volplaning also refers to this mode of flight in animals. It is employed by gliding animals and by aircraft such as gliders. This mode of flight involves flying a significant distance horizontally compared to its descent and therefore can be distinguished from a mostly straight downward descent like a round parachute.

<span class="mw-page-title-main">Red and white giant flying squirrel</span> Species of rodent

The red and white giant flying squirrel is a species of rodent in the family Sciuridae. It is a very large, dark rufous-red, buff and white flying squirrel found in forests at altitudes of 800–3,500 m (2,600–11,500 ft) in mainland China and 1,200–3,750 m (3,940–12,300 ft) in Taiwan, although the population of the latter island is distinctive and likely better regarded as a separate species, the Taiwan giant flying squirrel. Additionally, the red and white giant flying squirrel possibly ranges into northeastern South Asia and far northern Mainland Southeast Asia. This squirrel has a wide range and is relatively common, and the International Union for Conservation of Nature lists it as being of "least concern".

<span class="mw-page-title-main">Glider (sailplane)</span> Type of aircraft used in the sport of gliding

A glider or sailplane is a type of glider aircraft used in the leisure activity and sport of gliding. This unpowered aircraft can use naturally occurring currents of rising air in the atmosphere to gain altitude. Sailplanes are aerodynamically streamlined and so can fly a significant distance forward for a small decrease in altitude.

<span class="mw-page-title-main">Tradeoffs for locomotion in air and water</span> Comparison of swimming and flying, evolution and biophysics

Certain species of fish and birds are able to locomote in both air and water, two fluid media with very different properties. A fluid is a particular phase of matter that deforms under shear stresses and includes any type of liquid or gas. Because fluids are easily deformable and move in response to applied forces, efficiently locomoting in a fluid medium presents unique challenges. Specific morphological characteristics are therefore required in animal species that primarily depend on fluidic locomotion. Because the properties of air and water are so different, swimming and flying have very disparate morphological requirements. As a result, despite the large diversity of animals that are capable of flight or swimming, only a limited number of these species have mastered the ability to both fly and swim. These species demonstrate distinct morphological and behavioral tradeoffs associated with transitioning from air to water and water to air.

Unpowered flight is the ability to stay airborne for a period of time without using any power source. There are several types of unpowered flight. Some have been exploited by nature, others by humankind, and some by both.

<i>Yi</i> (dinosaur) Extinct genus of dinosaur

Yi is a genus of scansoriopterygid dinosaurs from the Late Jurassic of China. Its only species, Yi qi, is known from a single fossil specimen of an adult individual found in Middle or Late Jurassic Tiaojishan Formation of Hebei, China, approximately 159 million years ago. It was a small, possibly tree-dwelling (arboreal) animal. Like other scansoriopterygids, Yi possessed an unusual, elongated third finger, that appears to have helped to support a membranous gliding plane made of skin. The planes of Yi qi were also supported by a long, bony strut attached to the wrist. This modified wrist bone and membrane-based plane is unique among all known dinosaurs, and might have resulted in wings similar in appearance to those of bats.

<span class="mw-page-title-main">Bat flight</span>

Bats are the only mammal capable of true flight. Bats use flight for capturing prey, breeding, avoiding predators, and long-distance migration. Bat wing morphology is often highly specialized to the needs of the species.

References

  1. Pei, Rui; Pittman, Michael; Goloboff, Pablo A.; Dececchi, T. Alexander; Habib, Michael B.; Kaye, Thomas G.; Larsson, Hans C. E.; Norell, Mark A.; Brusatte, Stephen L.; Xu, Xing (6 August 2020). "Potential for Powered Flight Neared by Most Close Avialan Relatives, but Few Crossed Its Thresholds". Current Biology. 30 (20): 4033–4046.e8. doi: 10.1016/j.cub.2020.06.105 . hdl: 20.500.11820/1f69ce4d-97b2-4aac-9b29-57a7affea291 . PMID   32763170.
  2. 1 2 Hartman, Scott; Mortimer, Mickey; Wahl, William R.; Lomax, Dean R.; Lippincott, Jessica; Lovelace, David M. (10 July 2019). "A new paravian dinosaur from the Late Jurassic of North America supports a late acquisition of avian flight". PeerJ. 7: e7247. doi: 10.7717/peerj.7247 . PMC   6626525 . PMID   31333906.
  3. Anderson, Sophia C.; Ruxton, Graeme D. (2020). "The evolution of flight in bats: A novel hypothesis". Mammal Review. 50 (4): 426–439. doi: 10.1111/mam.12211 . hdl: 10023/20607 .
  4. Ivan Semeniuk (5 November 2011). "New theory on bat flight has experts a-flutter".
  5. 1 2 Bahlman, Joseph W.; Swartz, Sharon M.; Riskin, Daniel K.; Breuer, Kenneth S. (6 March 2013). "Glide performance and aerodynamics of non-equilibrium glides in northern flying squirrels (Glaucomys sabrinus)". Journal of the Royal Society Interface. 10 (80): 20120794. doi:10.1098/rsif.2012.0794. ISSN   1742-5689. PMC   3565731 . PMID   23256188.
  6. 1 2 Byrnes, Greg; Spence, Andrew J. (2012). "Ecological and Biomechanical Insights into the Evolution of Gliding in Mammals". Integrative and Comparative Biology. 51 (6): 991–1001. doi: 10.1093/icb/icr069 . ISSN   1557-7023. PMID   21719434.
  7. "Life in the Rainforest". Archived from the original on 9 July 2006. Retrieved 15 April 2006.
  8. 1 2 Suzuki, Kk; Yanagawa, H (28 February 2019). "Gliding patterns of Siberian flying squirrels in relation to forest structure". IForest - Biogeosciences and Forestry. 12 (1): 114–117. doi: 10.3832/ifor2954-011 .
  9. 1 2 3 Dudley, Robert; Byrnes, Greg; Yanoviak, Stephen P.; Borrell, Brendan; Brown, Rafe M.; McGuire, Jimmy A. (2012). "Gliding and the Functional Origins of Flight: Biomechanical Novelty or Necessity?". Annual Review of Ecology, Evolution, and Systematics. 38 (1): 179–201. doi:10.1146/annurev.ecolsys.37.091305.110014. ISSN   1543-592X.
  10. 1 2 3 4 5 6 7 8 Jackson, Stephen; Schouten, Peter (2012). Gliding Mammals of the World. doi:10.1071/9780643104051. ISBN   9780643104051.
  11. 1 2 Corlett, Richard T.; Primack, Richard B. (6 January 2011). Tropical Rain Forests: An Ecological and Biogeographical Comparison. Wiley. pp. 197, 200. ISBN   978-1-4443-9227-2.
  12. Simmons, N.B.; D.E. Wilson, D.C. Reeder (2005). Mammal Species of the World: A Taxonomic and Geographic Reference. Baltimore, MD: Johns Hopkins University Press. pp. 312–529.
  13. Alexander, David E. (July 2018). "A century and a half of research on the evolution of insect flight". Arthropod Structure & Development. 47 (4): 322–327. doi:10.1016/j.asd.2017.11.007. PMID   29169955. S2CID   19849219.
  14. Hartman, Scott; Mortimer, Mickey; Wahl, William R.; Lomax, Dean R.; Lippincott, Jessica; Lovelace, David M. (10 July 2019). "A new paravian dinosaur from the Late Jurassic of North America supports a late acquisition of avian flight". PeerJ. 7: e7247. doi:10.7717/peerj.7247. PMC 6626525. PMID 31333906.
  15. Kiat, Yosef; O’Connor, Jingmai K. (20 February 2024). "Functional constraints on the number and shape of flight feathers". Proceedings of the National Academy of Sciences. 121 (8). doi:10.1073/pnas.2306639121. ISSN 0027-8424.
  16. Kaplan, Matt (2011). "Ancient bats got in a flap over food". Nature. doi:10.1038/nature.2011.9304. S2CID   84015350.
  17. "Vertebrate Flight" . Retrieved 15 April 2006.
  18. Wang, Shizhao; Zhang, Xing; He, Guowei; Liu, Tianshu (September 2013). "Lift Enhancement by Dynamically Changing Wingspan in Forward Flapping Flight". Physics of Fluids. 26 (6): 061903. arXiv: 1309.2726 . Bibcode:2014PhFl...26f1903W. doi:10.1063/1.4884130. S2CID   55341336.
  19. 1 2 Wang, Z. Jane (January 2005). "Dissecting Insect Flight". Annual Review of Fluid Mechanics. 37 (1): 183–210. Bibcode:2005AnRFM..37..183W. doi:10.1146/annurev.fluid.36.050802.121940. S2CID   18931425.
  20. 1 2 Sane, S. P. (1 December 2003). "The aerodynamics of insect flight". Journal of Experimental Biology. 206 (23): 4191–4208. doi: 10.1242/jeb.00663 . PMID   14581590.
  21. Witton, Mark P.; Habib, Michael B. (15 November 2010). "On the Size and Flight Diversity of Giant Pterosaurs, the Use of Birds as Pterosaur Analogues and Comments on Pterosaur Flightlessness". PLOS ONE. 5 (11): e13982. Bibcode:2010PLoSO...513982W. doi: 10.1371/journal.pone.0013982 . ISSN   1932-6203. PMC   2981443 . PMID   21085624.
  22. Cáliz, Joan; Triadó-Margarit, Xavier; Camarero, Lluís; Casamayor, Emilio O. (27 November 2018). "A long-term survey unveils strong seasonal patterns in the airborne microbiome coupled to general and regional atmospheric circulations". Proceedings of the National Academy of Sciences. 115 (48): 12229–12234. Bibcode:2018PNAS..11512229C. doi: 10.1073/pnas.1812826115 . ISSN   0027-8424. PMC   6275539 . PMID   30420511.
  23. Huber, John T.; Noyes, John S. (2013). "A new genus and species of fairyfly, Tinkerbella nana (Hymenoptera, Mymaridae), with comments on its sister genus Kikiki, and discussion on small size limits in arthropods". Journal of Hymenoptera Research. 32: 17–44. doi: 10.3897/jhr.32.4663 .
  24. McCracken, Gary F.; Safi, Kamran; Kunz, Thomas H.; Dechmann, Dina K. N.; Swartz, Sharon M.; Wikelski, Martin (November 2016). "Airplane tracking documents the fastest flight speeds recorded for bats". Royal Society Open Science. 3 (11): 160398. Bibcode:2016RSOS....360398M. doi:10.1098/rsos.160398. PMC   5180116 . PMID   28018618.
  25. Photopoulos, Julianna (9 November 2016). "Speedy bat flies at 160 km/h, smashing bird speed record". New Scientist. Retrieved 11 November 2016. But not everyone is convinced. Graham Taylor at the University of Oxford says that errors in estimating bat speed by measuring the distance moved between successive positions could be huge. "So I think it would be premature to knock birds off their pedestal as nature's fastest fliers just yet," he says. "These bats are indeed flying very fast at times, but this is based on their ground speed," says Anders Hedenström at the University of Lund in Sweden. "Since they did not measure winds at the place and time where the bats are flying, one can therefore not exclude that the top speeds are not bats flying in a gust."
  26. Bird, David Michael (2004). The Bird Almanac: A Guide to Essential Facts and Figures of the World's Birds. Firefly Books. ISBN   978-1-55297-925-9.
  27. "Ruppell's griffon vulture". Smithsonian's National Zoo. 25 April 2016. Retrieved 21 September 2020.
  28. Pennisi, Elizabeth (3 September 2019). "This bird really can fly over Mount Everest, wind tunnel experiments reveal". Science | AAAS. Retrieved 21 September 2020.
  29. "Fillipone". Archived from the original on 24 September 2015. Retrieved 30 October 2012.
  30. Lu, Donna. "Flying snakes wiggle their bodies to glide down smoothly from trees". New Scientist. Retrieved 21 September 2020.
  31. McCAY, Michael G. (15 August 2001). "Aerodynamic Stability and Maneuverability of the Gliding Frog Polypedates Dennysi". Journal of Experimental Biology. 204 (16): 2817–2826. doi:10.1242/jeb.204.16.2817. ISSN   0022-0949. PMID   11683437.
  32. Munk, Yonatan; Yanoviak, Stephen P.; Koehl, M. a. R.; Dudley, Robert (1 May 2015). "The descent of ant: field-measured performance of gliding ants". Journal of Experimental Biology. 218 (9): 1393–1401. doi: 10.1242/jeb.106914 . ISSN   0022-0949. PMID   25788722.
  33. Tudge, Colin (2000). The Variety of Life . Oxford University Press. ISBN   0-19-860426-2.
  34. Basic Biology (2015). "Bats".
  35. Yanoviak, Stephen P; Kaspari, Michael; Dudley, Robert (23 August 2009). "Gliding hexapods and the origins of insect aerial behaviour". Biology Letters. 5 (4): 510–512. doi:10.1098/rsbl.2009.0029. PMC   2781901 . PMID   19324632.
  36. Yanoviak, Stephen. P.; Dudley, Robert; Kaspari, Michael (February 2005). "Directed aerial descent in canopy ants". Nature. 433 (7026): 624–626. Bibcode:2005Natur.433..624Y. doi:10.1038/nature03254. PMID   15703745. S2CID   4368995.
  37. "Scientist Discovers Rainforest Ants That Glide". Newswise. Retrieved 15 April 2006.
  38. Packard, A. (1972). "Cephalopods and fish: the limits of convergence". Biological Reviews. 47 (2): 241–307. doi:10.1111/j.1469-185X.1972.tb00975.x. S2CID   85088231.
  39. Macia, S. (1 August 2004). "New observations on airborne jet propulsion (flight) in squid, with a review of previous reports". Journal of Molluscan Studies. 70 (3): 297–299. doi: 10.1093/mollus/70.3.297 .
  40. "The news hub". 16 January 2012.
  41. 1 2 Piper, Ross (2007), Extraordinary Animals: An Encyclopedia of Curious and Unusual Animals, Greenwood Press.
  42. "Fast flying fish glides by ferry". 20 May 2008. Retrieved 5 March 2023 via news.bbc.co.uk.
  43. "Vertebrate Flight: gliding and parachuting" . Retrieved 15 April 2006.
  44. "Flying fish perform as well as some birds". Los Angeles Times. 11 September 2010. Retrieved 5 March 2023.
  45. Marshall, N.B. (1965) The Life of Fishes. London: Weidenfeld & Nicolson. 402 pp.
  46. Soares, Daphne; Bierman, Hilary S. (16 April 2013). "Aerial Jumping in the Trinidadian Guppy (Poecilia reticulata)". PLOS ONE. 8 (4): e61617. Bibcode:2013PLoSO...861617S. doi: 10.1371/journal.pone.0061617 . ISSN   1932-6203. PMC   3629028 . PMID   23613883.
  47. "trinidadian guppies poecilia: Topics by Science.gov". www.science.gov. Retrieved 13 January 2023.
  48. Poecilia reticulata (Guppy)
  49. Berra, Tim M. (2001). Freshwater Fish Distribution. San Diego: Academic Press. ISBN   0-12-093156-7
  50. Annals of the History and Philosophy of Biology 10/2005. Universitätsverlag Göttingen. 2006. ISBN   978-3-938616-39-0.
  51. . 14 January 2023 https://web.archive.org/web/20230114001218/https://d1wqtxts1xzle7.cloudfront.net/50102765/2001Videlerb-libre.pdf?1478273987=&response-content-disposition=inline;+filename=Fish_locomotion.pdf&Expires=1673655620&Signature=eRas7abQ181AUhI4Ut7g1~5FPbOypY5EP56bFO9zZPOMH-pzJIWEWGgmzcMaINmrCuP9r1ZtOkq3nO8BwSyWgnh4jjJc9mpNQ5JEHdlli4~qW8r7Xa-Tuduf8VpSuv3fDcqg8jeANUhigtlEx82~3GU8PXXWu2KxiRNGWH3UkzLQXBlMaEM5jK59gZrtK9q6dn8PRYPQmKzlowp4koZDKRMnQbK07qlvAvOlK2ulFZvhJNShzRrE04v2L7bqaeRsImIZMB9F2-sCLYtnw9JzkKhyPTmBj~xSalrM0sfUzIp1jSbj0pVzirtGwMzJvGskfIFJNoWfEbORKEzC5bodsg__&Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA. Archived from the original (PDF) on 14 January 2023. Retrieved 5 March 2023.{{cite web}}: Missing or empty |title= (help)
  52. Davenport, John (1 June 1994). "How and why do flying fish fly?". Reviews in Fish Biology and Fisheries. 4 (2): 184–214. Bibcode:1994RFBF....4..184D. doi:10.1007/BF00044128. ISSN   1573-5184. S2CID   34720887.
  53. Wiest, Francine C. (August 1995). "The specialized locomotory apparatus of the freshwater hatchetfish family Gasteropelecidae". Journal of Zoology. 236 (4): 571–592. doi:10.1111/j.1469-7998.1995.tb02733.x. ISSN   0952-8369.
  54. McCay, Michael G. (15 August 2001). "Aerodynamic Stability and Maneuverability of the Gliding Frog Polypedates dennysi". Journal of Experimental Biology. 204 (16): 2817–2826. doi:10.1242/jeb.204.16.2817. PMID   11683437.
  55. Emerson, Sharon B.; Koehl, M. A. R. (1990). "The interaction of behavioral and morphological change in the evolution of a novel locomotor type: "flying" frogs". Evolution. 44 (8): 1931–1946. doi:10.2307/2409604. JSTOR   2409604. PMID   28564439.
  56. Mendelson, Joseph R; Savage, Jay M; Griffith, Edgardo; Ross, Heidi; Kubicki, Brian; Gagliardo, Ronald (2008). "Spectacular new gliding species of Ecnomiohyla (Anura: Hylidae) from Central Panama". Journal of Herpetology. 42 (4): 750–759. doi:10.1670/08-025R1.1. S2CID   20233879.
  57. Walker, Matt (17 July 2009). "Tiny lizard falls like a feather". BBC Earth News.
  58. 1 2 3 "Ptychozoon: the geckos that glide with flaps and fringes (gekkotans part VIII) – Tetrapod Zoology". Archived from the original on 10 June 2010. Retrieved 7 June 2010.
  59. Magazine, Smithsonian; Black, Riley. "Why Bats Are One of Evolution's Greatest Puzzles". Smithsonian Magazine. Retrieved 5 March 2023.
  60. 1 2 Smith, Winston P. (2012). "Sentinels of Ecological Processes: The Case of the Northern Flying Squirrel". BioScience. 62 (11): 950–961. doi: 10.1525/bio.2012.62.11.4 . ISSN   1525-3244. S2CID   55719726.
  61. Vernes, Karl (1 November 2001). "Gliding Performance of the Northern Flying Squirrel (Glaucomys Sabrinus) in Mature Mixed Forest of Eastern Canada". Journal of Mammalogy. 82 (4): 1026–1033. doi: 10.1644/1545-1542(2001)082<1026:GPOTNF>2.0.CO;2 . ISSN   0022-2372.
  62. Byrnes, Greg; Lim, Norman T.-L; Spence, Andrew J (5 February 2008). "Take-off and landing kinetics of a free-ranging gliding mammal, the Malayan colugo (Galeopterus variegatus)". Proceedings of the Royal Society B: Biological Sciences. 275 (1638): 1007–1013. doi:10.1098/rspb.2007.1684. ISSN   0962-8452. PMC   2600906 . PMID   18252673.
  63. "Darren Naish: Tetrapod Zoology: Literally, flying lemurs (and not dermopterans)" . Retrieved 5 March 2023.
  64. "Literally, flying lemurs (and not dermopterans) – Tetrapod Zoology". Archived from the original on 16 August 2010. Retrieved 5 March 2023.
  65. Gliding Possums – Environment, New South Wales Government
  66. Cronin, Leonard – "Key Guide to Australian Mammals", published by Reed Books Pty. Ltd., Sydney, 1991 ISBN   0-7301-0355-2
  67. van der Beld, John – "Nature of Australia – A portrait of the island continent", co-published by William Collins Pty. Ltd. and ABC Enterprises for the Australian Broadcasting Corporation, Sydney, 1988 (revised edition 1992), ISBN   0-7333-0241-6
  68. Russell, Rupert – "Spotlight on Possums", published by University of Queensland Press, St. Lucia, Queensland, 1980, ISBN   0-7022-1478-7
  69. Troughton, Ellis – "Furred Animals of Australia", published by Angus and Robertson (Publishers) Pty. Ltd, Sydney, in 1941 (revised edition 1973), ISBN   0-207-12256-3
  70. Morcombe, Michael & Irene – "Mammals of Australia", published by Australian Universities Press Pty. Ltd, Sydney, 1974, ISBN   0-7249-0017-9
  71. Ride, W. D. L. – "A Guide to the Native Mammals of Australia", published by Oxford University Press, Melbourne, 1970, ISBN   0 19 550252 3
  72. Serventy, Vincent – "Wildlife of Australia", published by Thomas Nelson (Australia) Ltd., Melbourne, 1968 (revised edition 1977), ISBN   0-17-005168-4
  73. Serventy, Vincent (editor) – "Australia's Wildlife Heritage", published by Paul Hamlyn Pty. Ltd., Sydney, 1975
  74. Myers, Phil. "Family Pseudocheiridae" . Retrieved 15 April 2006.
  75. Mosher, Dave (12 June 2007). "Ancient Gliding Reptile Discovered". LiveScience.
  76. Dzik, J.; Sulej, Tomasz (2016). "An early Late Triassic long-necked reptile with a bony pectoral shield and gracile appendages" (PDF). Acta Palaeontologica Polonica. 64 (4): 805–823.
  77. Renesto, Silvo; Spielmann, Justin A.; Lucas, Spencer G.; Spagnoli, Giorgio Tarditi. The taxonomy and paleobiology of the Late Triassic (Carnian-Norian: Adamanian-Apachean) drepnosaurs (Diapsida: Archosauromorpha: Drepanosauromorpha): Bulletin 46. New Mexico Museum of Natural History and Science.
  78. "Earliest flying mammal discovered". 13 December 2006. Retrieved 5 March 2023 via news.bbc.co.uk.
  79. Gaetano, L.C.; Rougier, G.W. (2011). "New materials of Argentoconodon fariasorum (Mammaliaformes, Triconodontidae) from the Jurassic of Argentina and its bearing on triconodont phylogeny". Journal of Vertebrate Paleontology. 31 (4): 829–843. Bibcode:2011JVPal..31..829G. doi:10.1080/02724634.2011.589877. hdl: 11336/68497 . S2CID   85069761.
  80. Meng, Qing-Jin; Grossnickle, David M.; Di, Liu; Zhang, Yu-Guang; Neander, April I.; Ji, Qiang; Luo, Zhe-Xi (2017). "New gliding mammaliaforms from the Jurassic". Nature. 548 (7667): 291–296. Bibcode:2017Natur.548..291M. doi:10.1038/nature23476. PMID   28792929. S2CID   205259206.
  81. Szalay, FS, Sargis, EJ, and Stafford, BJ (2000) "Small marsupial glider from the Paleocene of Itaboraí, Brazil." in "Abstracts of Papers". Journal of Vertebrate Paleontology. 20 (Suppl 3): 1–86. 25 September 2000. Bibcode:2000JVPal..20S...1.. doi:10.1080/02724634.2000.10010765. JSTOR   4524139. S2CID   220412294.
  82. Storch, G.; Engesser, B.; Wuttke, M. (February 1996). "Oldest fossil record of gliding in rodents". Nature. 379 (6564): 439–441. Bibcode:1996Natur.379..439S. doi:10.1038/379439a0. ISSN   0028-0836. S2CID   4326465.

Further reading