Cursorial

Last updated
Horses can be considered cursorial grazers. The Horse in Motion.jpg
Horses can be considered cursorial grazers.

A cursorial organism is one that is adapted specifically to run. An animal can be considered cursorial if it has the ability to run fast (e.g. cheetah) or if it can keep a constant speed for a long distance (high endurance). "Cursorial" is often used to categorize a certain locomotor mode, which is helpful for biologists who examine behaviors of different animals and the way they move in their environment. Cursorial adaptations can be identified by morphological characteristics (e.g. loss of lateral digits as in ungulate species), physiological characteristics, maximum speed, and how often running is used in life. There is much debate over how to define a cursorial animal specifically. [1] [2] The most accepted definitions include that a cursorial organism could be considered adapted to long-distance running at high speeds or has the ability to accelerate quickly over short distances. Among vertebrates, animals under 1 kg of mass are rarely considered cursorial, and cursorial behaviors and morphology are thought to only occur at relatively large body masses in mammals. [3] There are a few mammals that have been termed "micro-cursors" that are less than 1 kg in mass and have the ability to run faster than other small animals of similar sizes. [4]

Contents

Some species of spiders are also considered cursorial, as they walk much of the day, looking for prey.

Cursorial adaptations

Terrestrial vertebrates

Adaptations for cursorial locomotion in terrestrial vertebrates include:

Typically, cursors will have long, slender limbs mostly due to the elongation of distal limb proportions (metatarsals/metacarpals) and loss or reduction of lateral digits with a digitigrade or unguligrade foot posture. [1] [2] [5] These characters are understood to decrease weight in the distal portions of the limb which allows the individual to swing the limb faster (minimizing the moment of inertia). [6] [7] [8] [9] [10] This gives the individual the ability to move their legs fast and is assumed to contribute to the ability to produce higher speeds. A larger concentration of muscles at the pectoral and pelvic girdles, with less muscle and more tendons as you move distally down the limb, is the typical configuration for quadrupedal cursors (e.g. cheetah, greyhound, horse). All ungulates are considered cursorial based on these criteria, but in fact there are some ungulates that do not habitually run. [11] Elongation of the limbs does increase stride length, which has been suggested to be more correlated with larger home ranges and foraging patterns in ungulates. [12] Stride length can also be lengthened by the mobility of the shoulder girdle. Some cursorial mammals have a reduced or absent clavicle, which allows the scapula to slide forward across the ribcage. [8] [13] [14]

Cursorial animals tend to have increased elastic storage in their epaxial muscles, which allows them to store elastic energy while the spine flexes and extends in the dorso-ventral plane. [15] Furthermore, limbs in cursorially adapted mammals will tend to stay in the dorso-ventral (or sagittal) plane to increase stability when moving forward at high speeds, but this hinders the amount of lateral flexibility that limbs can have. Some felids are special in that they can pronate and supinate their forearms and run fast, but this is not the case in most other quadrupedal cursors. [8] Ungulates and canids have restricted motion in their limbs and therefore could be considered more specialized for cursorial locomotion. Several rodents are also considered cursorial (e.g. the mara, capybara, and agouti) and have similar characters to other cursorial mammals such as reduced digits, more muscles in the proximal portion than distal portion of the limb, and straight, sagittally oriented limbs. [16] Some rodents are bipedal and can hop quickly to move around, which is called ricochetal or saltatorial instead of cursorial.

There are also bipedal cursors. Humans are bipedal and considered to be built for endurance running. Several species of birds are also cursorial, mainly those that have attained larger body sizes (ostrich, greater rhea, emu). Most of the stride length in birds comes from movements below the knee joint, because the femur is situated horizontally and the knee joint sits more towards the front of the body, placing the feet below the center of mass. [17] Different birds will increase their speed in one of two ways: by increasing the frequency of footfalls or increasing the stride length. [18] [19] Several studies have also found that many theropod dinosaurs (specifically coelurosaurs) were also cursorial to an extent. [2] [5]

Spiders

Spiders maintain balance when walking, so that legs 1 and 3 on one side and 2 and 4 on the other side are moving, while the other four legs are on the surface. To run faster, spiders increase their stride frequency. [20]

Cursorial taxa

Several notable taxa are cursorial, including some mammals (such as wolverines and wolves, ungulates, agoutis, and kangaroos) , as well as some dinosaurs (such as theropods, including birds like the ostrich). Several extinct archosaurs were also cursorial, including the crocodylomorphs Pristichampsus , Hesperosuchus , and several genera within Notosuchia.

Jumping spiders and other non-web based spiders generally walk throughout the day, so that they maximize their chances of a catch, [21] and web-based spiders run away if threatened. [22]

Many Blattodea have very sensitive cursorial legs, that can be so specialized they run away at the puff of wind, such as the American cockroach. [23]

In evolutionary theory

The presumed cursorial nature of theropod dinosaurs is an important part of the ground-up theory of the evolution of bird flight (also called the Cursorial theory), a theory that contrasts with the idea that birds' pre-flight ancestors were arboreal species and puts forth that the flight apparatus may have been adapted to improve hunting by lengthening leaps and improving maneuverability.[ citation needed ]

See also

Related Research Articles

<span class="mw-page-title-main">Bipedalism</span> Terrestrial locomotion using two limbs

Bipedalism is a form of terrestrial locomotion where a tetrapod moves by means of its two rear limbs or legs. An animal or machine that usually moves in a bipedal manner is known as a biped, meaning 'two feet'. Types of bipedal movement include walking or running and hopping.

<span class="mw-page-title-main">Gait</span> Pattern of movement of the limbs of animals

Gait is the pattern of movement of the limbs of animals, including humans, during locomotion over a solid substrate. Most animals use a variety of gaits, selecting gait based on speed, terrain, the need to maneuver, and energetic efficiency. Different animal species may use different gaits due to differences in anatomy that prevent use of certain gaits, or simply due to evolved innate preferences as a result of habitat differences. While various gaits are given specific names, the complexity of biological systems and interacting with the environment make these distinctions "fuzzy" at best. Gaits are typically classified according to footfall patterns, but recent studies often prefer definitions based on mechanics. The term typically does not refer to limb-based propulsion through fluid mediums such as water or air, but rather to propulsion across a solid substrate by generating reactive forces against it.

<span class="mw-page-title-main">Claw</span> Curved, pointed appendage at the end of a digit of a mammal, bird, or reptile

A claw is a curved, pointed appendage found at the end of a toe or finger in most amniotes. Some invertebrates such as beetles and spiders have somewhat similar fine, hooked structures at the end of the leg or tarsus for gripping a surface as they walk. The pincers of crabs, lobsters and scorpions, more formally known as their chelae, are sometimes called claws.

<span class="mw-page-title-main">Sesamoid bone</span> Bone embedded within a tendon or muscle

In anatomy, a sesamoid bone is a bone embedded within a tendon or a muscle. Its name is derived from the Greek word for 'sesame seed', indicating the small size of most sesamoids. Often, these bones form in response to strain, or can be present as a normal variant. The patella is the largest sesamoid bone in the body. Sesamoids act like pulleys, providing a smooth surface for tendons to slide over, increasing the tendon's ability to transmit muscular forces.

A purr or whirr is a tonal fluttering sound made by some species of felids, including both larger, outdoor cats and the domestic cat, as well as two species of genets. It varies in loudness and tone among species and in the same animal. In smaller and domestic cats it is known as a purr, while in larger felids, such as the panther, it is called a whirr.

<span class="mw-page-title-main">Upper limb</span> Consists of the arm, forearm, and hand

The upper limbs or upper extremities are the forelimbs of an upright-postured tetrapod vertebrate, extending from the scapulae and clavicles down to and including the digits, including all the musculatures and ligaments involved with the shoulder, elbow, wrist and knuckle joints. In humans, each upper limb is divided into the arm, forearm and hand, and is primarily used for climbing, lifting and manipulating objects.

<span class="mw-page-title-main">Animal locomotion</span> Self-propulsion by an animal

Animal locomotion, in ethology, is any of a variety of methods that animals use to move from one place to another. Some modes of locomotion are (initially) self-propelled, e.g., running, swimming, jumping, flying, hopping, soaring and gliding. There are also many animal species that depend on their environment for transportation, a type of mobility called passive locomotion, e.g., sailing, kiting (spiders), rolling or riding other animals (phoresis).

<span class="mw-page-title-main">Phalanx bone</span> Digital bone in the hands and feet of most vertebrates

The phalanges are digital bones in the hands and feet of most vertebrates. In primates, the thumbs and big toes have two phalanges while the other digits have three phalanges. The phalanges are classed as long bones.

<span class="mw-page-title-main">Forelimb</span> One of the paired articulated appendages attached on the cranial end of a vertebrates torso

A forelimb or front limb is one of the paired articulated appendages (limbs) attached on the cranial (anterior) end of a terrestrial tetrapod vertebrate's torso. With reference to quadrupeds, the term foreleg or front leg is often used instead. In bipedal animals with an upright posture, the term upper limb is often used.

<span class="mw-page-title-main">Serratus anterior muscle</span> Muscle on the surface of the ribs

The serratus anterior is a muscle of the chest. It originates at the side of the chest from the upper 8 or 9 ribs; it inserts along the entire length of the anterior aspect of the medial border of the scapula. It is innervated by the long thoracic nerve from the brachial plexus. The serratus anterior acts to pull the scapula forward around the thorax.

<span class="mw-page-title-main">Terrestrial locomotion</span> Ability of animals to travel on land

Terrestrial locomotion has evolved as animals adapted from aquatic to terrestrial environments. Locomotion on land raises different problems than that in water, with reduced friction being replaced by the increased effects of gravity.

<span class="mw-page-title-main">Iliotibial tract</span> Longitudinal fibrous reinforcement of the fascia lata

The iliotibial tract or iliotibial band is a longitudinal fibrous reinforcement of the fascia lata. The action of the muscles associated with the ITB flex, extend, abduct, and laterally and medially rotate the hip. The ITB contributes to lateral knee stabilization. During knee extension the ITB moves anterior to the lateral condyle of the femur, while ~30 degrees knee flexion, the ITB moves posterior to the lateral condyle. However, it has been suggested that this is only an illusion due to the changing tension in the anterior and posterior fibers during movement. It originates at the anterolateral iliac tubercle portion of the external lip of the iliac crest and inserts at the lateral condyle of the tibia at Gerdy's tubercle. The figure shows only the proximal part of the iliotibial tract.

A facultative biped is an animal that is capable of walking or running on two legs (bipedal), as a response to exceptional circumstances (facultative), while normally walking or running on four limbs or more. In contrast, obligate bipedalism is where walking or running on two legs is the primary method of locomotion. Facultative bipedalism has been observed in several families of lizards and multiple species of primates, including sifakas, capuchin monkeys, baboons, gibbons, gorillas, bonobos and chimpanzees. Several dinosaur and other prehistoric archosaur species are facultative bipeds, most notably ornithopods and marginocephalians, with some recorded examples within sauropodomorpha. Different facultatively bipedal species employ different types of bipedalism corresponding to the varying reasons they have for engaging in facultative bipedalism. In primates, bipedalism is often associated with food gathering and transport. In lizards, it has been debated whether bipedal locomotion is an advantage for speed and energy conservation or whether it is governed solely by the mechanics of the acceleration and lizard's center of mass. Facultative bipedalism is often divided into high-speed (lizards) and low-speed (gibbons), but some species cannot be easily categorized into one of these two. Facultative bipedalism has also been observed in cockroaches and some desert rodents.

The posterior compartment of the forearm contains twelve muscles which primarily extend the wrist and digits. It is separated from the anterior compartment by the interosseous membrane between the radius and ulna.

The postorbital bar is a bony arched structure that connects the frontal bone of the skull to the zygomatic arch, which runs laterally around the eye socket. It is a trait that only occurs in mammalian taxa, such as most strepsirrhine primates and the hyrax, while haplorhine primates have evolved fully enclosed sockets. One theory for this evolutionary difference is the relative importance of vision to both orders. As haplorrhines tend to be diurnal, and rely heavily on visual input, many strepsirrhines are nocturnal and have a decreased reliance on visual input.

<span class="mw-page-title-main">Origin of avian flight</span> Evolution of birds from non-flying ancestors

Around 350 BCE, Aristotle and other philosophers of the time attempted to explain the aerodynamics of avian flight. Even after the discovery of the ancestral bird Archaeopteryx which lived over 150 million years ago, debates still persist regarding the evolution of flight. There are three leading hypotheses pertaining to avian flight: Pouncing Proavis model, Cursorial model, and Arboreal model.

<span class="mw-page-title-main">Arboreal locomotion</span> Movement of animals through trees

Arboreal locomotion is the locomotion of animals in trees. In habitats in which trees are present, animals have evolved to move in them. Some animals may scale trees only occasionally, but others are exclusively arboreal. The habitats pose numerous mechanical challenges to animals moving through them and lead to a variety of anatomical, behavioral and ecological consequences as well as variations throughout different species. Furthermore, many of these same principles may be applied to climbing without trees, such as on rock piles or mountains.

<span class="mw-page-title-main">Human skeletal changes due to bipedalism</span> Evoltionary changes to the human skeleton as a consequence of bipedalism

The evolution of human bipedalism, which began in primates approximately four million years ago, or as early as seven million years ago with Sahelanthropus, or approximately twelve million years ago with Danuvius guggenmosi, has led to morphological alterations to the human skeleton including changes to the arrangement, shape, and size of the bones of the foot, hip, knee, leg, and the vertebral column. These changes allowed for the upright gait to be overall more energy efficient in comparison to quadrupeds. The evolutionary factors that produced these changes have been the subject of several theories that correspond with environmental changes on a global scale.

<span class="mw-page-title-main">Comparative foot morphology</span> Comparative anatomy

Comparative foot morphology involves comparing the form of distal limb structures of a variety of terrestrial vertebrates. Understanding the role that the foot plays for each type of organism must take account of the differences in body type, foot shape, arrangement of structures, loading conditions and other variables. However, similarities also exist among the feet of many different terrestrial vertebrates. The paw of the dog, the hoof of the horse, the manus (forefoot) and pes (hindfoot) of the elephant, and the foot of the human all share some common features of structure, organization and function. Their foot structures function as the load-transmission platform which is essential to balance, standing and types of locomotion.

The endurance running hypothesis is a series of conjectures which presume humans evolved anatomical and physiological adaptations to run long distances and, more strongly, that "running is the only known behavior that would account for the different body plans in Homo as opposed to apes or australopithecines".

References

  1. 1 2 Stein, B. R.; Casinos, A. (1997). "What is a cursorial mammal?". Journal of Zoology. 242 (1): 185–192. doi:10.1111/j.1469-7998.1997.tb02939.x. ISSN   1469-7998.
  2. 1 2 3 Carrano, M. T. (1999). "What, if anything, is a cursor? Categories versus continua for determining locomotor habit in mammals and dinosaurs" (PDF). Journal of Zoology. 247 (1): 29–42. doi:10.1111/j.1469-7998.1999.tb00190.x. ISSN   1469-7998.
  3. Steudel, Karen; Beattie, Jeanne (1993). "Scaling of cursoriality in mammals". Journal of Morphology. 217 (1): 55–63. doi:10.1002/jmor.1052170105. ISSN   1097-4687. PMID   8411186. S2CID   23878485.
  4. Lovegrove, Barry G.; Mowoe, Metobor O. (2014-04-15). "The evolution of micro-cursoriality in mammals". Journal of Experimental Biology. 217 (8): 1316–1325. doi: 10.1242/jeb.095737 . ISSN   0022-0949. PMID   24436375.
  5. 1 2 Coombs, Walter P. (1978). "Theoretical Aspects of Cursorial Adaptations in Dinosaurs". The Quarterly Review of Biology. 53 (4): 393–418. doi:10.1086/410790. ISSN   0033-5770. JSTOR   2826581. S2CID   84505681.
  6. Payne, R. C.; Hutchinson, J. R.; Robilliard, J. J.; Smith, N. C.; Wilson, A. M. (2005). "Functional specialisation of pelvic limb anatomy in horses (Equus caballus)". Journal of Anatomy. 206 (6): 557–574. doi:10.1111/j.1469-7580.2005.00420.x. ISSN   1469-7580. PMC   1571521 . PMID   15960766.
  7. Payne, R. C.; Veenman, P.; Wilson, A. M. (2005). "The role of the extrinsic thoracic limb muscles in equine locomotion". Journal of Anatomy. 206 (2): 193–204. doi:10.1111/j.1469-7580.2005.00353.x. ISSN   1469-7580. PMC   1571467 . PMID   15730484.
  8. 1 2 3 Hudson, Penny E.; Corr, Sandra A.; Payne‐Davis, Rachel C.; Clancy, Sinead N.; Lane, Emily; Wilson, Alan M. (2011). "Functional anatomy of the cheetah (Acinonyx jubatus) forelimb". Journal of Anatomy. 218 (4): 375–385. doi:10.1111/j.1469-7580.2011.01344.x. ISSN   1469-7580. PMC   3077521 . PMID   21332715.
  9. Hudson, Penny E.; Corr, Sandra A.; Payne‐Davis, Rachel C.; Clancy, Sinead N.; Lane, Emily; Wilson, Alan M. (2011). "Functional anatomy of the cheetah (Acinonyx jubatus) hindlimb". Journal of Anatomy. 218 (4): 363–374. doi:10.1111/j.1469-7580.2010.01310.x. ISSN   1469-7580. PMC   3077520 . PMID   21062282.
  10. Hudson, Penny E.; Corr, Sandra A.; Wilson, Alan M. (2012-07-15). "High speed galloping in the cheetah (Acinonyx jubatus) and the racing greyhound (Canis familiaris): spatio-temporal and kinetic characteristics". Journal of Experimental Biology. 215 (14): 2425–2434. doi: 10.1242/jeb.066720 . ISSN   0022-0949. PMID   22723482.
  11. Barr, W. Andrew (2014). "Functional morphology of the bovid astragalus in relation to habitat: Controlling phylogenetic signal in ecomorphology". Journal of Morphology. 275 (11): 1201–1216. doi:10.1002/jmor.20279. ISSN   1097-4687. PMID   25042704. S2CID   19573938.
  12. Janis, Christine M.; Wilhelm, Patricia Brady (1993-06-01). "Were there mammalian pursuit predators in the tertiary? Dances with wolf avatars". Journal of Mammalian Evolution. 1 (2): 103–125. doi:10.1007/BF01041590. ISSN   1573-7055. S2CID   22739360.
  13. Hildebrand, Milton (1960). "HOW ANIMALS RUN". Scientific American. 202 (5): 148–160. doi:10.1038/scientificamerican0560-148. ISSN   0036-8733. JSTOR   24940484. PMID   13852321.
  14. Seckel, Lauren; Janis, Christine (2008-05-30). "Convergences in Scapula Morphology among Small Cursorial Mammals: An Osteological Correlate for Locomotory Specialization". Journal of Mammalian Evolution. 15 (4): 261. doi:10.1007/s10914-008-9085-7. ISSN   1573-7055. S2CID   22353187.
  15. Galis, Frietson; Carrier, David R.; Alphen, Joris van; Mije, Steven D. van der; Dooren, Tom J. M. Van; Metz, Johan A. J.; Broek, Clara M. A. ten (2014-08-05). "Fast running restricts evolutionary change of the vertebral column in mammals". Proceedings of the National Academy of Sciences. 111 (31): 11401–11406. doi: 10.1073/pnas.1401392111 . ISSN   0027-8424. PMC   4128151 . PMID   25024205.
  16. Elissamburu, A.; Vizcaíno, S. F. (2004). "Limb proportions and adaptations in caviomorph rodents (Rodentia: Caviomorpha)". Journal of Zoology. 262 (2): 145–159. doi:10.1017/S0952836903004485. ISSN   1469-7998.
  17. Jones, Terry D.; Farlow, James O.; Ruben, John A.; Henderson, Donald M.; Hillenius, Willem J. (August 2000). "Cursoriality in bipedal archosaurs" (PDF). Nature. 406 (6797): 716–718. doi:10.1038/35021041. ISSN   1476-4687. PMID   10963594. S2CID   4395244.
  18. Abourachid, Anick; Renous, Sabine (2000). "Bipedal locomotion in ratites (Paleognatiform): examples of cursorial birds". Ibis. 142 (4): 538–549. doi:10.1111/j.1474-919X.2000.tb04455.x. ISSN   1474-919X.
  19. Abourachid, Anick (2000-11-01). "Bipedal locomotion in birds: the importance of functional parameters in terrestrial adaptation in Anatidae". Canadian Journal of Zoology. 78 (11): 1994–1998. doi:10.1139/z00-112. ISSN   0008-4301.
  20. Anderson, D. T. (1998). "The Chelicerata". In D. T. Anderson (ed.). Invertebrate Zoology (1 ed.). Oxford University Press Australia. p. 328. ISBN   0-19-553941-9.
  21. Forster, Lyn M. (Nov 1977). "Some factors affecting feeding behaviour in young Trite auricoma spiderlings (Araneae: Salticidae)". New Zealand Journal of Zoology. 4 (4). The Royal Society of New Zealand: 435–442. doi: 10.1080/03014223.1977.9517967 . Retrieved 24 April 2011.
  22. Wilcox, R. Stimson; Jackson, Robert R. (1998). "Cognitive Abilities of Araneophagic Jumping Spiders". In Balda, Russell P.; Pepperberg, Irene Maxine; Kamil, Alan C. (eds.). Animal cognition in nature: the convergence of psychology and biology in laboratory and field. Academic Press. p. 418. ISBN   978-0-12-077030-4 . Retrieved 23 May 2011.
  23. Camhi, J.M; Tom, W. (1978). "The Escape Behavior of the Cockroach, Periplaneta americana". Journal of Comparative Physiology. 128 (3): 193–201. doi:10.1007/BF00656852. S2CID   6958840.