Wing-assisted incline running

Last updated

Wing-assisted incline running (abbreviated as "WAIR") is a running behavior observed in living birds as well as a model proposed to explain the evolution of avian flight. WAIR allows birds to run up steep or vertical inclines by flapping their wings, scaling greater inclines than possible through running alone. The WAIR origin-of-flight hypothesis proposes that the nascent wings of theropod dinosaurs were used to propel the animal up slopes, such as cliffs or trees, in a similar manner to that employed by modern birds, and that powered flight eventually evolved from this usage. [1] During its proposal, it was suggested that WAIR might have plausibly been used by feathered theropods like Caudipteryx to develop aerial flight. [2]

Contents

WAIR in living birds

An adult chukar running on a horizontal plane Chukar Partridge RWD.jpg
An adult chukar running on a horizontal plane

Wing-assisted incline running has been studied extensively in chicks of the chukar partridge (Alectoris chukar), [2] [3] [4] and has been observed in juveniles and adults of other species of Galliformes as well as the rock dove (Columba livia). [5] In chukar chicks, WAIR was experimentally demonstrated by comparing maximum inclines ascended by normal chicks to those with wing feathers trimmed or plucked entirely. On both smooth and rough surfaces, normal chicks were able to run up much steeper slopes than the other two groups, reaching maximum angles of 105° from the horizontal. Chicks used running alone at slopes up to 45°, then employed wing-flapping at greater slopes, and maximum slope successfully scaled increased with age. [2] When baby chukars hatch, they have not yet developed their flight feathers. As the babies develop, it takes approximately one week for feathers to appear, and about three weeks for the ability to fly. As the baby chukars grow and before flying for the first time, they use WAIR as a transition to adult flight. [4] WAIR has also been studied in the Australian brushturkey (Alectura lathami), although maximum slope decreased with age, such that hatchlings could scale greater slopes (up to 110°) than adults (up to 70°). [6] In rock doves, adults employ WAIR at angles greater than 65°. [5]

Explanation of using WAIR over normal flight

These galliformes might use WAIR instead of normal flight to reach tree branches because WAIR uses less energy than normal flight. Fewer muscles are used in the process of WAIR than normal flight, specifically pectoral and shoulder muscles which contribute to wing flapping. [5] This provides an additional explanation as to why birds continue to use WAIR: it is faster than normal flight take-off, and running requires less energy than does flying. Therefore; the hindlimbs, in conjunction with the wings, may produce quick bouts of energy which may allow the bird to catch prey. [7] This strategy also allows energy to be stored for use in a fight-or-flight situation such as to escape becoming eaten or caught. [5] [6] WAIR imposes less aerodynamic and physical forces than normal avian flight on the bird, an advantageous trait which may increase fitness. [6] WAIR could have been used for balance purposes. [3] Many theories propose that the manifestation of WAIR in birds is for predatory escape purposes, in that they are able to run up extremely steep and past vertical slopes (such as the trunk of a tree) to escape from a ground-dwelling predator. [3] [5] Another reason for the manifestation of WAIR may be for dispersal or to find food or resources, but this idea is mostly proposed as a survival strategy. [7] Whether it is to evade predation, catch prey, enhance reproductive success, or simply a variation imposed for dispersal, flight among avian creatures has evolved to be a highly successful trait.

Origin of flight hypothesis

The WAIR hypothesis for the origin of flight is a version of the "cursorial model" of the evolution of avian flight, in which birds' wings originated from forelimb modifications that provided downforce, enabling the proto-birds to run up extremely steep slopes such as the trunks of trees. The hypothesis was prompted by the observation of living young chukar chicks using WAIR, and proposes that dinosaur wings developed their aerodynamic functions as a result of the need to run quickly up very steep slopes such as tree trunks, possibly to escape from predators. [2] Originally, it was thought that birds need downforce to give their feet increased grip in this scenario. [2] [3] However, a study found lift generated from wings to be the primary factor for successfully accelerating, indicating the onset of flight ability was constrained by neuromuscular control or power rather than by the shape of the wing itself, and that partially developed wings not yet capable of flight could indeed provide useful lift during WAIR. [4] Additionally, when both the power and work needed for WAIR were examined, it was identified that the need for pectoral muscles in flight increases with the angle being scaled. Thus, WAIR is a hypothesis providing a model for an evolutionary transition from terrestrial to aerial locomotion as birds skeletally adapted to meet the requirements to scale steeper and steeper inclines by flight. [5] This might have allowed smaller, potentially juvenile maniraptorans to scale the sides of trees to escape predators that were too big to climb. WAIR may have been present in oviraptorosaurs and therizinosauroids, but as the adults, especially of therizinosauroids, would probably break the trees trying to climb, their hatchlings or chicks would have made it up easily. Because of this way to escape predation, early maniraptorans might have evolved their long arms, true feathers and fused wishbones. [8]

Response

One possible problem with the WAIR origin of flight hypothesis was noticed by Philip Senter. He argued that early birds, including Archaeopteryx , lacked the shoulder mechanism by which modern birds' wings produce swift, powerful upstrokes. Since the downforce on which WAIR depends is generated by upstrokes, Senter argued that early birds were incapable of WAIR or flapping flight. [9]

Evidence has been proposed against the WAIR hypothesis, stating that it is too simplistic and does not take additional information into effect. There have been additional mechanisms suggested, such as climbing claws, that would have provided an advantage for the birds, but are absent in fossil records or extant birds. [10] Other arguments against WAIR include a lack of fossil evidence and no additional intermediate or transition stages available for study which would provide supplementary evidence for WAIR. [3] [7]

See also

Related Research Articles

<i>Archaeopteryx</i> Genus of early bird-like dinosaur

Archaeopteryx, sometimes referred to by its German name, "Urvogel", is a genus of avian dinosaurs. The name derives from the ancient Greek ἀρχαῖος (archaīos), meaning "ancient", and πτέρυξ (ptéryx), meaning "feather" or "wing". Between the late 19th century and the early 21st century, Archaeopteryx was generally accepted by palaeontologists and popular reference books as the oldest known bird. Older potential avialans have since been identified, including Anchiornis, Xiaotingia, and Aurornis.

<span class="mw-page-title-main">Chukar partridge</span> Species of bird

The chukar partridge, or simply chukar, is a Palearctic upland gamebird in the pheasant family Phasianidae. It has been considered to form a superspecies complex along with the rock partridge, Philby's partridge and Przevalski's partridge and treated in the past as conspecific particularly with the first. This partridge has well-marked black and white bars on the flanks and a black band running from the forehead across the eye down the head to form a necklace that encloses a white throat. Native to Asia, the species has been introduced into many other places and feral populations have established themselves in parts of North America and New Zealand. This bird can be found in parts of Middle East and temperate Asia.

<i>Microraptor</i> Extinct genus of dinosaurs

Microraptor is a genus of small, four-winged dromaeosaurid dinosaurs. Numerous well-preserved fossil specimens have been recovered from Liaoning, China. They date from the early Cretaceous Jiufotang Formation, 125 to 120 million years ago. Three species have been named, though further study has suggested that all of them represent variation in a single species, which is properly called M. zhaoianus. Cryptovolans, initially described as another four-winged dinosaur, is usually considered to be a synonym of Microraptor.

<span class="mw-page-title-main">Maniraptora</span> Clade of dinosaurs

Maniraptora is a clade of coelurosaurian dinosaurs which includes the birds and the non-avian dinosaurs that were more closely related to them than to Ornithomimus velox. It contains the major subgroups Avialae, Dromaeosauridae, Troodontidae, Oviraptorosauria, and Therizinosauria. Ornitholestes and the Alvarezsauroidea are also often included. Together with the next closest sister group, the Ornithomimosauria, Maniraptora comprises the more inclusive clade Maniraptoriformes. Maniraptorans first appear in the fossil record during the Jurassic Period, and survive today as living birds.

<span class="mw-page-title-main">Bird flight</span> Locomotion

Bird flight is the primary mode of locomotion used by most bird species in which birds take off and fly. Flight assists birds with feeding, breeding, avoiding predators, and migrating.

<span class="mw-page-title-main">Scansoriopterygidae</span> Extinct family of dinosaurs

Scansoriopterygidae is an extinct family of climbing and gliding maniraptoran dinosaurs. Scansoriopterygids are known from five well-preserved fossils, representing four species, unearthed in the Tiaojishan Formation fossil beds of Liaoning and Hebei, China.

<span class="mw-page-title-main">Evolution of birds</span> Derivation of birds from a dinosaur precursor

The evolution of birds began in the Jurassic Period, with the earliest birds derived from a clade of theropod dinosaurs named Paraves. Birds are categorized as a biological class, Aves. For more than a century, the small theropod dinosaur Archaeopteryx lithographica from the Late Jurassic period was considered to have been the earliest bird. Modern phylogenies place birds in the dinosaur clade Theropoda. According to the current consensus, Aves and a sister group, the order Crocodilia, together are the sole living members of an unranked reptile clade, the Archosauria. Four distinct lineages of bird survived the Cretaceous–Paleogene extinction event 66 million years ago, giving rise to ostriches and relatives (Palaeognathae), ducks and relatives (Anseriformes), ground-living fowl (Galliformes), and "modern birds" (Neoaves).

<span class="mw-page-title-main">Crested argus</span> Species of bird

Crested arguses are large and spectacular peafowl-like birds in the genus Rheinardia of the pheasant family.

<span class="mw-page-title-main">Origin of birds</span> Evolution, adaptation, and origin of birds

The scientific question of within which larger group of animals birds evolved has traditionally been called the "origin of birds". The present scientific consensus is that birds are a group of maniraptoran theropod dinosaurs that originated during the Mesozoic Era.

<span class="mw-page-title-main">Origin of avian flight</span> Evolution of birds from non-flying ancestors

Around 350 BCE, Aristotle and other philosophers of the time attempted to explain the aerodynamics of avian flight. Even after the discovery of the ancestral bird Archaeopteryx which lived over 150 million years ago, debates still persist regarding the evolution of flight. There are three leading hypotheses pertaining to avian flight: Pouncing Proavis model, Cursorial model, and Arboreal model.

<span class="mw-page-title-main">Paraves</span> Clade of all dinosaurs that are more closely related to birds than to oviraptorosaurs

Paraves are a widespread group of theropod dinosaurs that originated in the Middle Jurassic period. In addition to the extinct dromaeosaurids, troodontids, anchiornithids, and possibly the scansoriopterygids, the group also contains the avialans, which include diverse extinct taxa as well as the over 10,000 species of living birds. Basal members of Paraves are well known for the possession of an enlarged claw on the second digit of the foot, which was held off the ground when walking in some species. A number of differing scientific interpretations of the relationships between paravian taxa exist. New fossil discoveries and analyses make the classification of Paraves an active subject of research.

<i>Eoalulavis</i> Extinct genus of birds

Eoalulavis is a monotypic genus of enantiornithean bird that lived during the Barremian, in the Lower Cretaceous around 125 million years ago. The only known species is Eoalulavis hoyasi.

<i>Anchiornis</i> Extinct genus of birds

Anchiornis is a genus of small, four-winged paravian dinosaurs, with only one known species, the type species Anchiornis huxleyi, named for its similarity to modern birds. The Latin name Anchiornis derives from a Greek word meaning "near bird", and huxleyi refers to Thomas Henry Huxley, a contemporary of Charles Darwin.

<span class="mw-page-title-main">Proavis</span>

Proavis refers to a hypothetical extinct species or hypothetical extinct taxon and was coined in the early 20th century in an attempt to support and explain the hypothetical evolutionary steps and anatomical adaptations leading from non-avian theropod dinosaurs to birds. The term has also been used by defenders of the thecodontian origin of birds.

<span class="mw-page-title-main">Tradeoffs for locomotion in air and water</span> Comparison of swimming and flying, evolution and biophysics

Certain species of fish and birds are able to locomote in both air and water, two fluid media with very different properties. A fluid is a particular phase of matter that deforms under shear stresses and includes any type of liquid or gas. Because fluids are easily deformable and move in response to applied forces, efficiently locomoting in a fluid medium presents unique challenges. Specific morphological characteristics are therefore required in animal species that primarily depend on fluidic locomotion. Because the properties of air and water are so different, swimming and flying have very disparate morphological requirements. As a result, despite the large diversity of animals that are capable of flight or swimming, only a limited number of these species have mastered the ability to both fly and swim. These species demonstrate distinct morphological and behavioral tradeoffs associated with transitioning from air to water and water to air.

<i>The Origin of Birds</i> Book by Gerhard Heilmann

The Origin of Birds is an early synopsis of bird evolution written in 1926 by Gerhard Heilmann, a Danish artist and amateur zoologist. The book was born from a series of articles published between 1913 and 1916 in Danish, and although republished as a book it received mainly criticism from established scientists and got little attention within Denmark. The English edition of 1926, however, became highly influential at the time due to the breadth of evidence synthesized as well as the artwork used to support its arguments. It was considered the last word on the subject of bird evolution for several decades after its publication.

<i>Yi</i> (dinosaur) Extinct genus of dinosaur

Yi is a genus of scansoriopterygid dinosaurs from the Late Jurassic of China. Its only species, Yi qi, is known from a single fossil specimen of an adult individual found in Middle or Late Jurassic Tiaojishan Formation of Hebei, China, approximately 159 million years ago. It was a small, possibly tree-dwelling (arboreal) animal. Like other scansoriopterygids, Yi possessed an unusual, elongated third finger, that appears to have helped to support a membranous gliding plane made of skin. The planes of Yi qi were also supported by a long, bony strut attached to the wrist. This modified wrist bone and membrane-based plane is unique among all known dinosaurs, and might have resulted in wings similar in appearance to those of bats.

<i>Zhenyuanlong</i> Extinct genus of dinosaurs

Zhenyuanlong is a genus of dromaeosaurid dinosaur from the Yixian Formation of Liaoning, China. It lived during the Aptian age of the early Cretaceous period, approximately 125 million years ago. It is known from a single specimen belonging to the species Zhenyuanlong suni. This type specimen preserved a nearly complete skeleton that contains traces of feathers, including long tail feathers and large wings. In addition to further complicating diversity of Liaoning dromaeosaurids, this specimen provides the first evidence of well-developed pennaceous feathers in a large, non-flying dromaeosaur, raising the question of what function such wings would serve.

<i>Feathers: The Evolution of a Natural Miracle</i> Book by Thor Hanson

Feathers: The Evolution of a Natural Miracle is a natural history book by American conservation biologist Thor Hanson. Published by Basic Books in 2011 and written for general audiences, the book discusses the significance of feathers, their evolution, and their history both in nature and in use by humans.

Feather development occurs in the epidermal layer of the skin in birds. It is a complicated process involving many steps. Once the feathers are fully developed, there are six different types of feathers: contour, flight, down, filoplumes, semiplumes, and bristle feathers. Feathers were not originally meant for flight. The exact reason why feathers evolved is still unknown. Birds are thought to be descendants of dinosaurs and new technology using melanosomes found in dinosaur fossils has shown that certain dinosaurs that could not fly had feathers.

References

  1. Bicudo, J. Eduardo (May 26, 2010). Ecological and Environmental Physiology of Birds. Oxford University Press. p. 15. ISBN   978-0199228454.
  2. 1 2 3 4 5 Dial, K.P. (2003). "Wing-Assisted Incline Running and the Evolution of Flight" (PDF). Science. 299 (5605): 402–404. Bibcode:2003Sci...299..402D. doi:10.1126/science.1078237. PMID   12532020. S2CID   40712093.
  3. 1 2 3 4 5 Bundle, M.W & Dial, K.P. (2003). "Mechanics of wing-assisted incline running (WAIR)" (PDF). The Journal of Experimental Biology. 206 (Pt 24): 4553–4564. doi: 10.1242/jeb.00673 . PMID   14610039. S2CID   6323207.
  4. 1 2 3 Tobalske, B. W. & Dial, K. P. (2007). "Aerodynamics of wing-assisted incline running in birds". The Journal of Experimental Biology. 210 (Pt 10): 1742–1751. doi:10.1242/jeb.001701. PMID   17488937. S2CID   18502446.
  5. 1 2 3 4 5 6 Jackson, B. E., Tobalske, B. W. and Dial, K. P. (2011). "The broad range of contractile behaviour of the avian pectoralis: functional and evolutionary implications" (Automatic PDF download). The Journal of Experimental Biology. 214 (Pt 14): 2354–2361. doi: 10.1242/jeb.052829 . PMID   21697427. S2CID   7496862.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  6. 1 2 3 Dial, K. P.; Jackson, B. E. (2010). "When hatchlings outperform adults: locomotor development in Australian brush turkeys (Alectura lathami, Galliformes)". Proceedings of the Royal Society B: Biological Sciences. 278 (1712): 1610–1616. doi:10.1098/rspb.2010.1984. PMC   3081770 . PMID   21047855.
  7. 1 2 3 Dial, K. P.; Randall, R. J.; Dial, T. R. (2006). "What Use Is Half a Wing in the Ecology and Evolution of Birds?". BioScience. 56 (5): 437–445. doi: 10.1641/0006-3568(2006)056[0437:WUIHAW]2.0.CO;2 .
  8. Holtz, T.R. Jr. (2007). "Oviraptorosaurs and Therizinosauroids (Egg-thief and sloth dinosaurs)". In Holtz, Thomas R. Jr. (ed.). Dinosaurs: The Most Complete, Up-to-date Encyclopedia for Dinosaur Lovers of All Ages. Random House Books for Young Readers. p.  149. ISBN   978-0-375-92419-4.
  9. Senter, P. (2006). "Scapular orientation in theropods and basal birds, and the origin of flapping flight" (Automatic PDF download). Acta Palaeontologica Polonica. 51 (2): 305–313.
  10. Nudds, Robert L.; Dyke, Gareth J. (2009). "Forelimb posture in dinosaurs and the evolution of the avian flapping flight- stroke". Evolution. 63 (4): 994–1002. doi: 10.1111/j.1558-5646.2009.00613.x . PMID   19154383. S2CID   29012467.