Dipterocarpaceae

Last updated

Dipterocarpaceae
Temporal range: Maastrichtian - recent [1]
Dipterocarpus retusus - Kohler-s Medizinal-Pflanzen-054.jpg
Dipterocarpus retusus
Scientific classification OOjs UI icon edit-ltr.svg
Kingdom: Plantae
Clade: Tracheophytes
Clade: Angiosperms
Clade: Eudicots
Clade: Rosids
Order: Malvales
Family: Dipterocarpaceae
Blume (1825) [2]
Genera [3]

Dipterocarpaceae is a family of flowering plants with 22 genera [3] and about 695 known species [4] of mainly lowland tropical forest trees. Their distribution is pantropical, from northern South America to Africa, the Seychelles, India, Indochina, Indonesia, Malaysia and Philippines. [5] [6] The greatest diversity of Dipterocarpaceae occurs in Borneo. [7]

Contents

The largest genera are Shorea (196 species), Hopea (104 species), Dipterocarpus (70 species), and Vatica (65 species). [8] Many are large forest-emergent species, typically reaching heights of 40–70 m, some even over 80 m (in the genera Dryobalanops , [8] Hopea [9] and Shorea ), [9] with the tallest known living specimen ( Shorea faguetiana ) 93.0 m tall. [9] Name Menara, or tower in Malaysian, this specimen is a yellow meranti tree. It grows in Danum Valley in Sabah. [10]

The species of this family are of major importance in the timber trade. Some species are now endangered as a result of overcutting, extensive illegal logging, and habitat conversion. They provide valuable woods, aromatic essential oils, balsam, and resins, and are a source for plywood.

Taxonomy

The family name comes from the type genus Dipterocarpus which is derived from Greek words διdi "two", πτερόνpteron "wing", and καρπόςkarpós "fruit"; the words combined refer to the two-winged fruit available from trees of that genus, other related genera with winged fruits of more than two are included in the family as well. [11]

Classification

The dipterocarp family is generally divided into two subfamilies:

Phylogeny of the Dipterocarpaceae [7]
Dipterocarpaceae

A recent genetic study found that the Asian dipterocarps share a common ancestor with the Sarcolaenaceae, a tree family endemic to Madagascar. [16] This suggests that ancestor of the dipterocarps originated in the southern supercontinent of Gondwana, and that the common ancestor of the Asian dipterocarps and the Sarcolaenaceae was found in the India-Madagascar-Seychelles land mass millions of years ago, and were carried northward by India, which later collided with Asia and allowed the dipterocarps to spread across Southeast Asia and Malaysia. Although associated with Southeast Asia in contemporary times, recent studies using fossil pollen and molecular data suggest an African origin in the mid-cretaceous. [17] Prior to this research, the first dipterocarp pollen was found in Myanmar (which at that time was part of the Indian Plate) and it dates from the upper Oligocene. [18] The sample appears to slowly increase in terms of diversity and abundance across the region into the mid-Miocene. [18] Chemical traces of dipterocarp resins have been found dating back to the Eocene of India. The oldest fossil of the family are from the latest Cretaceous (Maastrichtian) aged Intertrappean Beds of India, assignable to the extant genus Dipterocarpus . [19]

Subfamily Pakaraimoideae containing the sole genus Pakaraimaea , formerly placed here and native to the Guaianan highlands of South America, is now found to be more closely related the Cistaceae and is placed there in the APG IV (2016). [20]

Fossilized arthropods

Some 52-million-year-old amber found in the Gujarat province, India, containing a large amount of fossilized arthropods, was identified as sap from the family Dipterocarpaceae. [21]

Dipterocarpaceae fossil displayed at Philippine National Museum Dipterocarpaceae displayed at Philippine National Museum.jpg
Dipterocarpaceae fossil displayed at Philippine National Museum

Ecology

Dipterocarpaceae species can be either evergreen or deciduous. [22] Species occurring in Thailand grow from sea level to about 1300 m elevation. Environments in which the species of the family occur in Thailand include lowland dipterocarp forest 0–350 m, riparian fringe, limestone hills, and coastal hills.

The dipterocarps has dominated the Borneo lowland rain forests for millions of years. [23]

Conservation and climate change

Primary lowland dipterocarp forest at Danum Valley, Sabah, Malaysia Dipterocarp Forest at Danum Valley (13997709808).jpg
Primary lowland dipterocarp forest at Danum Valley, Sabah, Malaysia
Anisoptera costata at Taksin Maharat National Park, Thailand Kabark-Tree Taksin Maharat NP.jpg
Anisoptera costata at Taksin Maharat National Park, Thailand

As the dominant tree in Southeast Asia, the Dipterocarp family has seen extensive study relating to its conservation status. They are a keystone species of the native forests of this region, and are essential to their function and structure.

One study by Pang et al. examined the impacts of climate change and land cover on the distribution of this important tree family in the Philippines. They used species distribution models (SDMs) for 19 species that were projected onto both current and future climate scenarios, with current land cover incorporated as well. They found that the current land cover alone reduced the species distributions by 67%, and 37% in protected areas. On the other hand, climate change reduced species distributions by 16-27% in both protected and unprotected areas. There was also an upward shift in elevation of species distribution as a result of climate change, as habitats changed. They concluded that there was a need to improve protected area planning as refuges for critical species, with SDMs proving to be a useful tool for providing projections that can then be incorporated into this planning process. [24]

Another paper by Shishir et al. also investigated the potential effects of climate change on a threatened Dipterocarp tree in Purbachal, Bangladesh. Using a model that incorporated nine different environmental variables such as climate, geography, and soil conditions, they looked at two climate scenarios. They found that precipitation and soil nitrogen were the largest determinants of distribution, and that suitable habitat for this species will decline by 21-28% relative to the present land area as a result of climate change. [25]

In Borneo, nearly all species of the Dipterocarp family are imperiled [26] .

See also

Related Research Articles

<span class="mw-page-title-main">Malesia</span> Biogeographical region in Southeast Asia

Malesia is a biogeographical region straddling the Equator and the boundaries of the Indomalayan and Australasian realms, and also a phytogeographical floristic region in the Paleotropical Kingdom. The original definition by the World Geographical Scheme for Recording Plant Distributions included Papuasia, but this was split off in its 2001 version.

<span class="mw-page-title-main">Sarcolaenaceae</span> Family of flowering plants

The Sarcolaenaceae are a family of flowering plants endemic to Madagascar. The family includes 79 species of mostly evergreen trees and shrubs in ten genera.

<i>Shorea</i> Genus of trees

Shorea is a genus of about 196 species of mainly rainforest trees in the family Dipterocarpaceae. The timber of trees of the genus is sold under the common names lauan, luan, lawaan, meranti, seraya, balau, bangkirai, and Philippine mahogany.

<i>Dipterocarpus</i> Genus of trees

Dipterocarpus is a genus of flowering plants and the type genus of family Dipterocarpaceae.

<i>Hopea beccariana</i> Species of tree

Hopea beccariana is a species of tree in the family Dipterocarpaceae. It is named for the Italian botanist Odoardo Beccari.

Hopea mesuoides is a tree in the family Dipterocarpaceae, native to Borneo. The specific epithet mesuoides refers to the species' resemblance to the genus Mesua.

Hopea pedicellata is a tree in the family Dipterocarpaceae. The specific epithet pedicellata, refers to the species' prominent pedicel.

Hopea sangal is a tree in the family Dipterocarpaceae. It is native to tropical Asia.

<i>Vatica harmandiana</i> Species of tree

Vatica harmandiana, also known by the synonym Vatica cinerea, is a species of plant in the family Dipterocarpaceae. It is a smallish tree native to Southeast Asia. It is the most common plant species in certain types of mature woodland habitat within its range and is furthermore common in disturbed secondary forests covering much of its range, nonetheless it was considered, along with most Dipterocarpaceae, to be endangered by the IUCN between 1998 and 2017. It is usually not commercially harvested except for local use.

Anthoshorea agami, synonym Shorea agami, is a species of plant in the family Dipterocarpaceae. The species is named after J. Agama a one time forest officier in the Sabah Forestry Department.

<span class="mw-page-title-main">Borneo lowland rain forests</span> Ecoregion in Borneo

The Borneo lowland rain forests is an ecoregion, within the tropical and subtropical moist broadleaf forests biome, of the large island of Borneo in Southeast Asia. It supports approximately 15,000 plant species, 380 bird species and several mammal species. The Borneo lowland rain forests is diminishing due to logging, hunting and conversion to commercial land use.

Pakaraimaea is a genus of trees in the family Cistaceae. The genus contains a single species, Pakaraimaea dipterocarpacea, from South America. It was formerly placed in subfamily Pakaraimoideae of the family Dipterocarpaceae. The species is found in the western highlands of Guyana and in adjacent Bolivar State in Venezuela. It maintains strong ectomycorrhizal associations with a wide variety of fungal species. The trees can sometimes be seen forming large stands in the western Guyanas.

Dipterocarpus dyeri (Khmer: rôyiëng, chhë tiël pruhs, chhë tiël th'nô:r, local name Kompong Thom: chhieutiel chgor, name used for commercial timber and the group of trees harvested for such: keruing, Vietnamese: Dầu Song Nàng, is a species of tree in the family Dipterocarpaceae found in Myanmar, Thailand, Peninsular Malaysia, Cambodia, Vietnam, and northwestern Borneo. The tree is found in rain forest and lowland semi-evergreen dipterocarp forests, an alternative habitat description is mixed dense forests of the plains, mainly among rivers and valleys. The tree is a climax or late successional species, which in some secondary forests forms relatively young pure colonies. The conservation status is based on rates of habitat loss, the major threat to the taxa, though in Vietnam it is cited as having a less threatened conservation status of Vulnerable.

<i>Dipterocarpus intricatus</i> Species of tree

Dipterocarpus intricatus is a species of tree in the family Dipterocarpaceae found in Thailand, Cambodia, Laos and Vietnam.

Memecylon cantleyi is a shrub or tree species in the Melastomataceae family. The flowers are white and vivid blue. The plant is native to an area from Borneo to Sumatra to Thailand. A name given to the tree in Malaysia, nipis kulit, translates as "calamondin bark".

Botitian Forest Reserve is a protected forest reserve in Beluran District of Sandakan Division, Sabah, Malaysia. It was designated as a Class 1 Protection Forest by the Sabah Forestry Department in 1992. Its area is 2,145 hectares (21.45 km2). Botitian's terrain is mountainous in the reserve's centre, to low hills and flat land in the western and eastern sections. The forest is mainly secondary with pioneer species. Canopy trees are mainly dipterocarp.

Hopea dryobalanoides is a tree in the family Dipterocarpaceae. The specific epithet dryobalanoides means "resembling Dryobalanops", referring to that genus of trees and particularly their leaf veins.

Geoffrey Howorth Spencer Wood was an English botanist. He obtained an MA in botany and forestry from Oxford University in 1952. In 1954 he became Curator at the Sandakan Herbarium in present-day Sabah. His main area of interest was trees in the family Dipterocarpaceae. He died in 1957 from injuries suffered in a fuel explosion on a botanical expedition in the Andulau Hills of Brunei.

Shorea parvistipulata, locally known as kawang daun merah, is a species of tree in the family Dipterocarpaceae. It is endemic to Borneo, where it is widespread in lowland and hill rain forests.

References

  1. "Malvales". www.mobot.org. Retrieved 2023-07-20.
  2. Angiosperm Phylogeny Group (2009). "An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG III". Botanical Journal of the Linnean Society. 161 (2): 105–121. doi: 10.1111/j.1095-8339.2009.00996.x . hdl: 10654/18083 .
  3. 1 2 "Dipterocarpaceae Blume". Plants of the World Online . Royal Botanic Gardens, Kew . Retrieved 17 September 2024.
  4. Christenhusz, M. J. M. & Byng, J. W. (2016). "The number of known plants species in the world and its annual increase". Phytotaxa. 261 (3): 201–217. doi: 10.11646/phytotaxa.261.3.1 .
  5. Simon Gardner, Pindar Sidisunthorn and Lai Ee May, 2011. Heritage Trees of Penang. Penang: Areca Books. ISBN   978-967-57190-6-6
  6. Pang Sean E H, De Alban Jose Don T, & Webb Edward L. (2021). Effects of climate change and land cover on the distributions of a critical botanical family in the Philippines. Scientific Reports, 11(1), 276–276. [./Https://doi.org/10.1038/s41598-020-79491-9
  7. 1 2 3 Ashton, P.S. Dipterocarpaceae. Flora Malesiana, 1982 Series I, 92: 237-552
  8. 1 2 3 Ashton, P.S. Dipterocarpaceae. In Tree Flora of Sabah and Sarawak, Volume 5, 2004. Soepadmo, E., Saw, L. G. and Chung, R. C. K. eds. Government of Malaysia, Kuala Lumpur, Malaysia. ISBN   983-2181-59-3
  9. 1 2 3 "Borneo". Eastern Native Tree Society. Archived from the original on 2012-02-15. Retrieved 2009-04-17.
  10. Daley, Jason (April 9, 2019). "This Is the World's Tallest Tropical Tree". Smithsonian Magazine. p. 1. Retrieved February 26, 2024.
  11. Ghazoul, Jaboury (2016). Dipterocarp Biology, Ecology, and Conservation. Oxford, England, UK: Oxford University Press. p. 51. ISBN   978-0-19-108784-4.
  12. Maury-Lechon, G. and Curtet, L. Biogeography and Evolutionary Systematics of Dipterocarpaceae. In A Review of Dipterocarps: Taxonomy, ecology and silviculture, 1998. Appanah, S. and Turnbull, J. M. eds. Center for International Forestry Research, Bogor, Indonesia. ISBN   979-8764-20-X
  13. S Dayanandan; P S Ashton; S M Williams; R B Primack (1999). "Phylogeny of the tropical tree family Dipterocarpaceae based on nucleotide sequences of the chloroplast RBCL gene". American Journal of Botany. 86 (8): 1182–90. doi: 10.2307/2656982 . JSTOR   2656982. PMID   10449398.
  14. S. Indrioko; O. Gailing; R. Finkeldey (2006). "Molecular phylogeny of Dipterocarpaceae in Indonesia based on chloroplast DNA". Plant Systematics and Evolution. 261 (1–4): 99–115. doi:10.1007/s00606-006-0435-8. S2CID   26395665.
  15. Ashton, P.S., Heckenhauer, J. Tribe Shoreae (Dipterocarpaceae subfamily Dipterocarpoideae) Finally Dissected. Kew Bulletin 77, 885–903 (2022). https://doi.org/10.1007/s12225-022-10057-w
  16. M. Ducousso, G. Béna, C. Bourgeois, B. Buyck, G. Eyssartier, M. Vincelette, R. Rabevohitra, L. Randrihasipara, B. Dreyfus, Y. Prin. The last common ancestor of Sarcolaenaceae and Asian dipterocarp trees was ectomycorrhizal before the India-Madagascar separation, about 88 million years ago. Molecular Ecology 13: 231 January 2004.
  17. Bansal, Mahi; Morley, Robert J.; Nagaraju, Shivaprakash K.; Dutta, Suryendu; Mishra, Ashish Kumar; Selveraj, Jeyakumar; Kumar, Sumit; Niyolia, Deepti; Harish, Sachin Medigeshi; Abdelrahim, Omer Babiker; Hasan, Shaa eldin; Ramesh, Bramasamdura Rangana; Dayanandan, Selvadurai; Morley, Harsanti P.; Ashton, Peter S. (2022-01-28). "Southeast Asian Dipterocarp origin and diversification driven by Africa-India floristic interchange". Science. 375 (6579): 455–460. doi:10.1126/science.abk2177. ISSN   0036-8075. PMID   35084986. S2CID   246360938.
  18. 1 2 Morley, R.J. 2000. Origin and Evolution of Tropical Rain Forests. Wiley-Blackwell, NY.
  19. Khan, Mahasin Ali; Spicer, Robert A.; Spicer, Teresa E. V.; Roy, Kaustav; Hazra, Manoshi; Hazra, Taposhi; Mahato, Sumana; Kumar, Sanchita; Bera, Subir (2020-11-03). "Dipterocarpus (Dipterocarpaceae) leaves from the K-Pg of India: a Cretaceous Gondwana presence of the Dipterocarpaceae". Plant Systematics and Evolution. 306 (6): 90. doi:10.1007/s00606-020-01718-z. ISSN   1615-6110. S2CID   228870254.
  20. Angiosperm Phylogeny Group (2016), "An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV", Botanical Journal of the Linnean Society, 161 (2): 105–20, doi: 10.1111/boj.12385
  21. Sample, Ian. "Prehistoric creatures discovered in huge Indian amber haul" The Guardian, 25 October 2010. Retrieved: 26 October 2010.
  22. Smitinand, Tem; Santisuk, Thatwatchai (1981). "Dipterocarpaceae of Thailand with Special Reference to Silvicultural Ecology". Malaysian Forester. 44: 377–85.
  23. "A prehistoric forest grows in Brunei". ScienceDaily. 28 April 2022.
  24. Pang, Sean E. H.; De Alban, Jose Don T.; Webb, Edward L. (2021-01-11). "Effects of climate change and land cover on the distributions of a critical tree family in the Philippines". Scientific Reports. 11 (1): 276. doi:10.1038/s41598-020-79491-9. ISSN   2045-2322. PMC   7801684 . PMID   33432023.
  25. Shishir, Sharmin; Mollah, Tanjinul Hoque; Tsuyuzaki, Shiro; Wada, Naoya (2020-12-01). "Predicting the probable impact of climate change on the distribution of threatened Shorea robusta forest in Purbachal, Bangladesh". Global Ecology and Conservation. 24: e01250. doi: 10.1016/j.gecco.2020.e01250 . ISSN   2351-9894.
  26. Einhorn, Catrin. "How Are the World's Trees Doing? A New Assessment Has Answers". New York Times.