Fabales

Last updated

Fabales
Temporal range: Albian-Recent [1]
Senna occidentalis.jpg
Scientific classification OOjs UI icon edit-ltr.svg
Kingdom: Plantae
Clade: Tracheophytes
Clade: Angiosperms
Clade: Eudicots
Clade: Rosids
Clade: Fabids
Order: Fabales
Bromhead [2]
Families
Synonyms
  • Caesalpiniales Martius
  • Cassiales Link
  • Mimosales Link
  • Polygalales Berchtold & J. Presl
  • Quillajales Doweld
  • Surianales Doweld

Fabales is an order of flowering plants included in the rosid group of the eudicots in the Angiosperm Phylogeny Group II classification system. In the APG II circumscription, this order includes the families Fabaceae or legumes (including the subfamilies Caesalpinioideae, Mimosoideae, and Faboideae), Quillajaceae, Polygalaceae or milkworts (including the families Diclidantheraceae, Moutabeaceae, and Xanthophyllaceae), and Surianaceae. Under the Cronquist system and some other plant classification systems, the order Fabales contains only the family Fabaceae. In the classification system of Dahlgren the Fabales were in the superorder Fabiflorae (also called Fabanae) with three families corresponding to the subfamilies of Fabaceae in APG II. The other families treated in the Fabales by the APG II classification were placed in separate orders by Cronquist, the Polygalaceae within its own order, the Polygalales, and the Quillajaceae and Surianaceae within the Rosales.[ citation needed ]

Contents

The Fabaceae, as the third-largest plant family in the world, contain most of the diversity of the Fabales, the other families making up a comparatively small portion of the order's diversity. Research in the order is largely focused on the Fabaceae, due in part to its great biological diversity, and to its importance as food plants. The Polygalaceae are fairly well researched among plant families, in part due to the large diversity of the genus Polygala , and other members of the family being food plants for various Lepidoptera (butterfly and moth) species. [3] [4] While taxonomists using molecular phylogenetic techniques find strong support for the order, questions remain about the morphological relationships of the Quillajaceae and Surianaceae to the rest of the order, due in part to limited research on these families. [5]

According to molecular clock caculations, the lineage that led to Fabales split from other plants about 101 million years ago. [6]

Distribution

The Fabales are a cosmopolitan order of plants, except only the subfamily Papilionoideae (Faboideae) of the Fabaceae are well dispersed throughout the northern part of the North Temperate Zone. [7]

Phylogeny

The phylogeny of the Fabales is shown below.

Related Research Articles

<span class="mw-page-title-main">Asparagales</span> Order of monocot flowering plants

Asparagales is an order of plants in modern classification systems such as the Angiosperm Phylogeny Group (APG) and the Angiosperm Phylogeny Web. The order takes its name from the type family Asparagaceae and is placed in the monocots amongst the lilioid monocots. The order has only recently been recognized in classification systems. It was first put forward by Huber in 1977 and later taken up in the Dahlgren system of 1985 and then the APG in 1998, 2003 and 2009. Before this, many of its families were assigned to the old order Liliales, a very large order containing almost all monocots with colorful tepals and lacking starch in their endosperm. DNA sequence analysis indicated that many of the taxa previously included in Liliales should actually be redistributed over three orders, Liliales, Asparagales, and Dioscoreales. The boundaries of the Asparagales and of its families have undergone a series of changes in recent years; future research may lead to further changes and ultimately greater stability. In the APG circumscription, Asparagales is the largest order of monocots with 14 families, 1,122 genera, and about 36,000 species.

<span class="mw-page-title-main">Laurales</span> Order of flowering plants

The Laurales are an order of flowering plants. They are magnoliids, related to the Magnoliales.

<span class="mw-page-title-main">Rosales</span> Order of flowering plants

Rosales is an order of flowering plants. It is sister to a clade consisting of Fagales and Cucurbitales. It contains about 7,700 species, distributed into about 260 genera. Rosales comprise nine families, the type family being the rose family, Rosaceae. The largest of these families are Rosaceae (91/4828) and Urticaceae (53/2625). The order Rosales is divided into three clades that have never been assigned a taxonomic rank. The basal clade consists of the family Rosaceae; another clade consists of four families, including Rhamnaceae; and the third clade consists of the four urticalean families.

<span class="mw-page-title-main">Cornales</span> Order of flowering plants

The Cornales are an order of flowering plants, early diverging among the asterids, containing about 600 species. Plants within the Cornales usually have four-parted flowers, drupaceous fruits, and inferior to half-inferior gynoecia topped with disc-shaped nectaries.

<span class="mw-page-title-main">Nymphaeales</span> Order of flowering plants

The Nymphaeales are an order of flowering plants, consisting of three families of aquatic plants, the Hydatellaceae, the Cabombaceae, and the Nymphaeaceae. It is one of the three orders of basal angiosperms, an early-diverging grade of flowering plants. At least 10 morphological characters unite the Nymphaeales. One of the traits is the absence of a vascular cambium, which is required to produce both xylem (wood) and phloem, which therefore are missing. Molecular synapomorphies are also known.

<span class="mw-page-title-main">Fabaceae</span> Family of legume flowering plants

The Fabaceae or Leguminosae, commonly known as the legume, pea, or bean family, are a large and agriculturally important family of flowering plants. It includes trees, shrubs, and perennial or annual herbaceous plants, which are easily recognized by their fruit (legume) and their compound, stipulate leaves. The family is widely distributed, and is the third-largest land plant family in number of species, behind only the Orchidaceae and Asteraceae, with about 765 genera and nearly 20,000 known species.

<span class="mw-page-title-main">Ranunculales</span> Basal order of flowering plants in the eudicots

Ranunculales is an order of flowering plants. Of necessity it contains the family Ranunculaceae, the buttercup family, because the name of the order is based on the name of a genus in that family. Ranunculales belongs to a paraphyletic group known as the basal eudicots. It is the most basal clade in this group; in other words, it is sister to the remaining eudicots. Widely known members include poppies, barberries, hellebores, and buttercups.

<span class="mw-page-title-main">Austrobaileyales</span> Order of flowering plants

Austrobaileyales is an order of flowering plants consisting of about 100 species of woody plants growing as trees, shrubs and lianas. The best-known species is Illicium verum, commonly known as star anise. The order belongs to the group of basal angiosperms, the ANA grade, which diverged earlier from the remaining flowering plants. Austrobaileyales is sister to all remaining extant angiosperms outside the ANA grade.

<span class="mw-page-title-main">Aquifoliales</span> Order of flowering plants

The Aquifoliales are an order of flowering plants, including the Aquifoliaceae (holly) family, and also the Helwingiaceae and the Phyllonomaceae. In 2001, the families Stemonuraceae and Cardiopteridaceae were added to this order. This circumscription of Aquifoliales was recognized by the Angiosperm Phylogeny Group when they published the APG II system in 2003. In the Cronquist system, there is no Aquifoliales order: the Aquifoliaceae are placed within the order Celastrales and the others are in other families.

<span class="mw-page-title-main">Buxales</span> Order of eudicot flowering plants

The Buxales are a small order of eudicot flowering plants, recognized by the APG IV system of 2016. The order includes the family Buxaceae; the families Didymelaceae and Haptanthaceae may also be recognized or may be included in the Buxaceae. Many members of the order are evergreen shrubs or trees, although some are herbaceous perennials. They have separate "male" (staminate) and "female" (carpellate) flowers, mostly on the same plant. Some species are of economic importance either for the wood they produce or as ornamental plants.

<span class="mw-page-title-main">Primulaceae</span> Family of flowering plants that includes the primroses

The Primulaceae, commonly known as the primrose family, are a family of herbaceous and woody flowering plants including some favourite garden plants and wildflowers. Most are perennial though some species, such as scarlet pimpernel, are annuals.

<span class="mw-page-title-main">Angiosperm Phylogeny Group</span> Collaborative research group for the classification of flowering plants

The Angiosperm Phylogeny Group (APG) is an informal international group of systematic botanists who collaborate to establish a consensus on the taxonomy of flowering plants (angiosperms) that reflects new knowledge about plant relationships discovered through phylogenetic studies.

<span class="mw-page-title-main">Saxifragaceae</span> Family of flowering plants in the Eudicot order Saxifragales

Saxifragaceae is a family of herbaceous perennial flowering plants, within the core eudicot order Saxifragales. The taxonomy of the family has been greatly revised and the scope much reduced in the era of molecular phylogenetic analysis. The family is divided into ten clades, with about 640 known species in about 35 accepted genera. About half of these consist of a single species, but about 400 of the species are in the type genus Saxifraga. The family is predominantly distributed in the northern hemisphere, but also in the Andes in South America.

<span class="mw-page-title-main">Asphodelaceae</span> Family of flowering plants in the order Asparagales

Asphodelaceae is a family of flowering plants in the order Asparagales. Such a family has been recognized by most taxonomists, but the circumscription has varied widely. In its current circumscription in the APG IV system, it includes about 40 genera and 900 known species. The type genus is Asphodelus.

<span class="mw-page-title-main">Polygalaceae</span> Family of flowering plants

The Polygalaceae or the milkwort family are made up of flowering plants in the order Fabales. They have a near-cosmopolitan range, with about 27 genera and ca. 900 known species of herbs, shrubs and trees. Over half of the species are in one genus, Polygala, the milkworts.

<span class="mw-page-title-main">Asterids</span> Clade of eudicot angiosperms

In the APG IV system (2016) for the classification of flowering plants, the name asterids denotes a clade. Asterids is the largest group of flowering plants, with more than 80,000 species, about a third of the total flowering plant species. Well-known plants in this clade include the common daisy, forget-me-nots, nightshades, the common sunflower, petunias, yacon, morning glory, lettuce, sweet potato, coffee, lavender, lilac, olive, jasmine, honeysuckle, ash tree, teak, snapdragon, sesame, psyllium, garden sage, table herbs such as mint, basil, and rosemary, and rainforest trees such as Brazil nut.

Plant taxonomy is the science that finds, identifies, describes, classifies, and names plants. It is one of the main branches of taxonomy.

<span class="mw-page-title-main">Commelinids</span> Clade of monocot flowering plants

In plant taxonomy, commelinids is a clade of flowering plants within the monocots, distinguished by having cell walls containing ferulic acid.

The APG III system of flowering plant classification is the third version of a modern, mostly molecular-based, system of plant taxonomy being developed by the Angiosperm Phylogeny Group (APG). Published in 2009, it was superseded in 2016 by a further revision, the APG IV system.

References

  1. "Paleobiology Database".
  2. Angiosperm Phylogeny Group (2009). "An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG III". Botanical Journal of the Linnean Society. 161 (2): 105–121. doi: 10.1111/j.1095-8339.2009.00996.x . hdl: 10654/18083 .
  3. Janz, N; S Nylin (1998). "Butterflies and plants: A phylogenetic study". Evolution. 52 (2). Society for the Study of Evolution: 486–502. doi:10.2307/2411084. JSTOR   2411084. PMID   28568350.
  4. DeVries, PJ; AI Chacon (1992). "Toward a better understanding of host use and biodiversity in riodinid butterflies". Journal of Research on the Lepidoptera. 31 (1–2): 103–126. doi: 10.5962/p.266586 . S2CID   1559674.
  5. Morgan, DR; Soltis, DE; Robertson KR (July 1994). "Systematic and evolutionary implications of rbcL sequence variation in Rosaceae". American Journal of Botany . 81 (7). Botanical Society of America: 890–903. doi:10.2307/2445770. JSTOR   2445770.
  6. Susana Magallón & Amanda Castillo (2009), "Angiosperm diversification through time", American Journal of Botany, 96 (1): 349–365, doi:10.3732/ajb.0800060, PMID   21628193
  7. Stevens, PF (7 May 2006). "Angiosperm Phylogeny Website". Missouri Botanical Garden. Retrieved 2006-11-20.