Asparagales

Last updated

Asparagales
Temporal range: Upper Cretaceous– Recent
Asperge in bloei Asparagus officinalis.jpg
Garden asparagus ( Asparagus officinalis )
Scientific classification OOjs UI icon edit-ltr.svg
Kingdom: Plantae
Clade: Tracheophytes
Clade: Angiosperms
Clade: Monocots
Order: Asparagales
Link [1] [2]
Type genus
Asparagus
L.
Families
Synonyms

Asparagales (asparagoid lilies) is an order of plants in modern classification systems such as the Angiosperm Phylogeny Group (APG) and the Angiosperm Phylogeny Web. The order takes its name from the type family Asparagaceae and is placed in the monocots amongst the lilioid monocots. The order has only recently been recognized in classification systems. It was first put forward by Huber in 1977 and later taken up in the Dahlgren system of 1985 and then the APG in 1998, 2003 and 2009. Before this, many of its families were assigned to the old order Liliales, a very large order containing almost all monocots with colorful tepals and lacking starch in their endosperm. DNA sequence analysis indicated that many of the taxa previously included in Liliales should actually be redistributed over three orders, Liliales, Asparagales, and Dioscoreales. The boundaries of the Asparagales and of its families have undergone a series of changes in recent years; future research may lead to further changes and ultimately greater stability. In the APG circumscription, Asparagales is the largest order of monocots with 14 families, 1,122 genera, and about 36,000 species.

Contents

The order is clearly circumscribed on the basis of molecular phylogenetics, but it is difficult to define morphologically since its members are structurally diverse. Most species of Asparagales are herbaceous perennials, although some are climbers and some are trees or shrubs. The order also contains many geophytes (bulbs, corms, and various kinds of tuber). According to telomere sequence, at least two evolutionary switch-points happened within the order. The basal sequence is formed by TTTAGGG like in the majority of higher plants. Basal motif was changed to vertebrate-like TTAGGG and finally, the most divergent motif CTCGGTTATGGG appears in Allium. One of the defining characteristics (synapomorphies) of the order is the presence of phytomelanin, a black pigment present in the seed coat, creating a dark crust. Phytomelanin is found in most families of the Asparagales (although not in Orchidaceae, thought to be the sister-group of the rest of the order).

The leaves of almost all species form a tight rosette, either at the base of the plant or at the end of the stem, but occasionally along the stem. The flowers are not particularly distinctive, being 'lily type', with six tepals and up to six stamina.

The order is thought to have first diverged from other related monocots some 120–130 million years ago (early in the Cretaceous period), although given the difficulty in classifying the families involved, estimates are likely to be uncertain.

From an economic point of view, the order Asparagales is second in importance within the monocots only to the order Poales (which includes grasses and cereals). Species are used as food and flavourings (e.g. onion, garlic, leek, asparagus, vanilla, saffron), in medicinal or cosmetic applications ( Aloe ), as cut flowers (e.g. freesia, gladiolus, iris, orchids), and as garden ornamentals (e.g. day lilies, lily of the valley, Agapanthus ).

Description

Seeds of Hippeastrum with dark phytomelan-containing coat Hippeastrum-seeds.jpg
Seeds of Hippeastrum with dark phytomelan-containing coat
Tree-like habit created by secondary thickening in Beaucarnea recurvata Nolina Menton.JPG
Tree-like habit created by secondary thickening in Beaucarnea recurvata

Although most species in the order are herbaceous, some no more than 15 cm high, there are a number of climbers (e.g., some species of Asparagus ), as well as several genera forming trees (e.g. Agave , Cordyline , Yucca , Dracaena , Aloe ), which can exceed 10 m in height. Succulent genera occur in several families (e.g. Aloe).

Almost all species have a tight cluster of leaves (a rosette), either at the base of the plant or at the end of a more-or-less woody stem as with Yucca . In some cases, the leaves are produced along the stem. The flowers are in the main not particularly distinctive, being of a general 'lily type', with six tepals, either free or fused from the base and up to six stamina. They are frequently clustered at the end of the plant stem.

The Asparagales are generally distinguished from the Liliales by the lack of markings on the tepals, the presence of septal nectaries in the ovaries, rather than the bases of the tepals or stamen filaments, and the presence of secondary growth. They are generally geophytes, but with linear leaves, and a lack of fine reticular venation.

The seeds characteristically have the external epidermis either obliterated (in most species bearing fleshy fruit), or if present, have a layer of black carbonaceous phytomelanin in species with dry fruits (nuts). The inner part of the seed coat is generally collapsed, in contrast to Liliales whose seeds have a well developed outer epidermis, lack phytomelanin, and usually display a cellular inner layer.

The orders which have been separated from the old Liliales are difficult to characterize. No single morphological character appears to be diagnostic of the order Asparagales.

Taxonomy

As circumscribed within the Angiosperm Phylogeny Group system Asparagales is the largest order within the monocotyledons, with 14 families, 1,122 genera and about 25,000–42,000 species, thus accounting for about 50% of all monocots and 10–15% of the flowering plants (angiosperms). [10] [11] The attribution of botanical authority for the name Asparagales belongs to Johann Heinrich Friedrich Link (1767–1851) who coined the word 'Asparaginae' in 1829 for a higher order taxon that included Asparagus [12] although Adanson and Jussieau had also done so earlier (see History). Earlier circumscriptions of Asparagales attributed the name to Bromhead (1838), who had been the first to use the term 'Asparagales'. [4]

History

Pre-Darwinian

The type genus, Asparagus , from which the name of the order is derived, was described by Carl Linnaeus in 1753, with ten species. [13] He placed Asparagus within the Hexandria Monogynia (six stamens, one carpel) in his sexual classification in the Species Plantarum . [14] The majority of taxa now considered to constitute Asparagales have historically been placed within the very large and diverse family, Liliaceae. The family Liliaceae was first described by Michel Adanson in 1763, [15] and in his taxonomic scheme he created eight sections within it, including the Asparagi with Asparagus and three other genera. [16] The system of organising genera into families is generally credited to Antoine Laurent de Jussieu who formally described both the Liliaceae and the type family of Asparagales, the Asparagaceae, as Lilia and Asparagi, respectively, in 1789. [17] Jussieu established the hierarchical system of taxonomy (phylogeny), placing Asparagus and related genera within a division of Monocotyledons, a class (III) of Stamina Perigynia [18] and 'order' Asparagi, divided into three subfamilies. [19] The use of the term Ordo (order) at that time was closer to what we now understand as Family, rather than Order. [20] [21] In creating his scheme he used a modified form of Linnaeus' sexual classification but using the respective topography of stamens to carpels rather than just their numbers. While De Jussieu's Stamina Perigynia also included a number of 'orders' that would eventually form families within the Asparagales such as the Asphodeli (Asphodelaceae), Narcissi (Amaryllidaceae) and Irides (Iridaceae), the remainder are now allocated to other orders. Jussieu's Asparagi soon came to be referred to as Asparagacées in the French literature (Latin: Asparagaceae). [22] Meanwhile, the 'Narcissi' had been renamed as the 'Amaryllidées' (Amaryllideae) in 1805, by Jean Henri Jaume Saint-Hilaire, using Amaryllis as the type species rather than Narcissus , and thus has the authority attribution for Amaryllidaceae. [23] In 1810, Brown proposed that a subgroup of Liliaceae be distinguished on the basis of the position of the ovaries and be referred to as Amaryllideae [24] and in 1813 de Candolle described Liliacées Juss. and Amaryllidées Brown as two quite separate families. [25]

The literature on the organisation of genera into families and higher ranks became available in the English language with Samuel Frederick Gray's A natural arrangement of British plants (1821). [26] Gray used a combination of Linnaeus' sexual classification and Jussieu's natural classification to group together a number of families having in common six equal stamens, a single style and a perianth that was simple and petaloid, but did not use formal names for these higher ranks. Within the grouping he separated families by the characteristics of their fruit and seed. He treated groups of genera with these characteristics as separate families, such as Amaryllideae, Liliaceae, Asphodeleae and Asparageae. [27]

Amaryllidaceae: Narcisseae - Pancratium maritimum L. John Lindley, Vegetable Kingdom 1846 Pancratium maritimum Lindley.jpg
Amaryllidaceae: Narcisseae – Pancratium maritimum L. John Lindley, Vegetable Kingdom 1846

The circumscription of Asparagales has been a source of difficulty for many botanists from the time of John Lindley (1846), the other important British taxonomist of the early nineteenth century. In his first taxonomic work, An Introduction to the Natural System of Botany (1830) [28] he partly followed Jussieu by describing a subclass he called Endogenae, or Monocotyledonous Plants (preserving de Candolle's Endogenæ phanerogamæ) [29] divided into two tribes, the Petaloidea and Glumaceae. He divided the former, often referred to as petaloid monocots, into 32 orders, including the Liliaceae (defined narrowly), but also most of the families considered to make up the Asparagales today, including the Amaryllideae.

By 1846, in his final scheme [30] Lindley had greatly expanded and refined the treatment of the monocots, introducing both an intermediate ranking (Alliances) and tribes within orders (i.e. families). Lindley placed the Liliaceae within the Liliales, but saw it as a paraphyletic ("catch-all") family, being all Liliales not included in the other orders, but hoped that the future would reveal some characteristic that would group them better. The order Liliales was very large and included almost all monocotyledons with colourful tepals and without starch in their endosperm (the lilioid monocots). The Liliales was difficult to divide into families because morphological characters were not present in patterns that clearly demarcated groups. This kept the Liliaceae separate from the Amaryllidaceae (Narcissales). Of these, Liliaceae [31] was divided into eleven tribes (with 133 genera) and Amaryllidaceae [32] into four tribes (with 68 genera), yet both contained many genera that would eventually segregate to each other's contemporary orders (Liliales and Asparagales respectively). The Liliaceae would be reduced to a small 'core' represented by the tribe Tulipae, while large groups such Scilleae and Asparagae would become part of Asparagales either as part of the Amaryllidaceae or as separate families. While of the Amaryllidaceae, the Agaveae would be part of Asparagaceae but the Alstroemeriae would become a family within the Liliales.

The number of known genera (and species) continued to grow and by the time of the next major British classification, that of the Bentham & Hooker system in 1883 (published in Latin) several of Lindley's other families had been absorbed into the Liliaceae. [33] They used the term 'series' to indicate suprafamilial rank, with seven series of monocotyledons (including Glumaceae), but did not use Lindley's terms for these. However, they did place the Liliaceous and Amaryllidaceous genera into separate series. The Liliaceae [34] were placed in series Coronariae, while the Amaryllideae [35] were placed in series Epigynae. The Liliaceae now consisted of twenty tribes (including Tulipeae, Scilleae and Asparageae), and the Amaryllideae of five (including Agaveae and Alstroemerieae). An important addition to the treatment of the Liliaceae was the recognition of the Allieae [36] as a distinct tribe that would eventually find its way to the Asparagales as the subfamily Allioideae of the Amaryllidaceae.

Post-Darwinian

The appearance of Charles Darwin's Origin of Species in 1859 changed the way that taxonomists considered plant classification, incorporating evolutionary information into their schemata. The Darwinian approach led to the concept of phylogeny (tree-like structure) in assembling classification systems, starting with Eichler. [37] Eichler, having established a hierarchical system in which the flowering plants (angiosperms) were divided into monocotyledons and dicotyledons, further divided into former into seven orders. Within the Liliiflorae were seven families, including Liliaceae and Amaryllidaceae. Liliaceae included Allium and Ornithogalum (modern Allioideae) and Asparagus . [38]

Engler, in his system developed Eichler's ideas into a much more elaborate scheme which he treated in a number of works including Die Natürlichen Pflanzenfamilien (Engler and Prantl 1888) [39] and Syllabus der Pflanzenfamilien (1892–1924). [40] In his treatment of Liliiflorae the Liliineae were a suborder which included both families Liliaceae and Amaryllidaceae. The Liliaceae [41] had eight subfamilies and the Amaryllidaceae [42] four. In this rearrangement of Liliaceae, with fewer subdivisions, the core Liliales were represented as subfamily Lilioideae (with Tulipae and Scilleae as tribes), the Asparagae were represented as Asparagoideae and the Allioideae was preserved, representing the alliaceous genera. Allieae, Agapantheae and Gilliesieae were the three tribes within this subfamily. [43] In the Amaryllidaceae, there was little change from the Bentham & Hooker. A similar approach was adopted by Wettstein. [44]

Twentieth century

Longitudinal section of Narcissus poeticus, R Wettstein Handbuch der Systematischen Botanik 1901-1924 Poeticus Wettstein.jpg
Longitudinal section of Narcissus poeticus , R Wettstein Handbuch der Systematischen Botanik 1901–1924

In the twentieth century the Wettstein system (1901–1935) placed many of the taxa in an order called 'Liliiflorae'. [45] Next Johannes Paulus Lotsy (1911) proposed dividing the Liliiflorae into a number of smaller families including Asparagaceae. [46] Then Herbert Huber (1969, 1977), following Lotsy's example, proposed that the Liliiflorae be split into four groups including the 'Asparagoid' Liliiflorae. [47] [48]

The widely used Cronquist system (1968–1988) [49] [50] [51] used the very broadly defined order Liliales.

These various proposals to separate small groups of genera into more homogeneous families made little impact till that of Dahlgren (1985) incorporating new information including synapomorphy. Dahlgren developed Huber's ideas further and popularised them, with a major deconstruction of existing families into smaller units. They created a new order, calling it Asparagales. This was one of five orders within the superorder Liliiflorae. [52] Where Cronquist saw one family, Dahlgren saw forty distributed over three orders (predominantly Liliales and Asparagales). [53] [54] Over the 1980s, in the context of a more general review of the classification of angiosperms, the Liliaceae were subjected to more intense scrutiny. By the end of that decade, the Royal Botanic Gardens at Kew, the British Museum of Natural History and the Edinburgh Botanical Gardens formed a committee to examine the possibility of separating the family at least for the organization of their herbaria. That committee finally recommended that 24 new families be created in the place of the original broad Liliaceae, largely by elevating subfamilies to the rank of separate families. [55]

Phylogenetics

The order Asparagales as currently circumscribed has only recently been recognized in classification systems, through the advent of phylogenetics. The 1990s saw considerable progress in plant phylogeny and phylogenetic theory, enabling a phylogenetic tree to be constructed for all of the flowering plants. The establishment of major new clades necessitated a departure from the older but widely used classifications such as Cronquist and Thorne based largely on morphology rather than genetic data. This complicated the discussion about plant evolution and necessitated a major restructuring. [56] rbcL gene sequencing and cladistic analysis of monocots had redefined the Liliales in 1995. [57] [58] from four morphological orders sensu Dahlgren. The largest clade representing the Liliaceae, all previously included in Liliales, but including both the Calochortaceae and Liliaceae sensu Tamura. This redefined family, that became referred to as core Liliales, but corresponded to the emerging circumscription of the Angiosperm Phylogeny Group (1998). [59]

Phylogeny and APG system

The 2009 revision of the Angiosperm Phylogeny Group system, APG III, places the order in the clade monocots. [60]

From the Dahlgren system of 1985 onwards, studies based mainly on morphology had identified the Asparagales as a distinct group, but had also included groups now located in Liliales, Pandanales and Zingiberales. [61] Research in the 21st century has supported the monophyly of Asparagales, based on morphology, 18S rDNA, and other DNA sequences, [62] [63] [64] [65] [66] although some phylogenetic reconstructions based on molecular data have suggested that Asparagales may be paraphyletic, with Orchidaceae separated from the rest. [67] Within the monocots, Asparagales is the sister group of the commelinid clade. [56]

This cladogram shows the placement of Asparagales within the orders of Lilianae sensu Chase & Reveal (monocots) based on molecular phylogenetic evidence. [68] [60] [69] [70] The lilioid monocot orders are bracketed, namely Petrosaviales, Dioscoreales, Pandanales, Liliales and Asparagales. [71] These constitute a paraphyletic assemblage, that is groups with a common ancestor that do not include all direct descendants (in this case commelinids as the sister group to Asparagales); to form a clade, all the groups joined by thick lines would need to be included. While Acorales and Alismatales have been collectively referred to as "alismatid monocots" (basal or early branching monocots), the remaining clades (lilioid and commelinid monocots) have been referred to as the "core monocots". [72] The relationship between the orders (with the exception of the two sister orders) is pectinate, that is diverging in succession from the line that leads to the commelinids. [69] Numbers indicate crown group (most recent common ancestor of the sampled species of the clade of interest) divergence times in mya (million years ago). [70]

Lilianae  sensu Chase & Reveal (monocots) 131 [68]
          

Acorales

Alismatales

122
          

Petrosaviales

120

Liliales 121

121

Asparagales 120

commelinids  118
          

Dasypogonaceae

Arecales

Poales

          

Zingiberales

Commelinales

Lilioid monocots 122

Subdivision

A phylogenetic tree for the Asparagales, generally to family level, but including groups which were recently and widely treated as families but which are now reduced to subfamily rank, is shown below. [10] [1]

Asparagales

Orchidaceae

Doryanthaceae

Iridaceae

Xeronemataceae

Asphodelaceae

Hemerocallidoideae (= Hemerocallidaceae)

Asphodeloideae (= Asphodelaceae)

Xanthorrhoeoideae (= Xanthorrhoeaceae s.s.)

'core' Asparagales
Amaryllidaceae  s.l.

Agapanthoideae (= Agapanthaceae)

Allioideae (= Alliaceae s.s.)

Amaryllidoideae (= Amaryllidaceae s.s.)

Asparagaceae  s.l.

Lomandroideae (= Laxmanniaceae)

Asparagoideae (= Asparagaceae s.s.)

Nolinoideae (= Ruscaceae)

Agavoideae (= Agavaceae)

Aphyllanthoideae (= Aphyllanthaceae)

Brodiaeoideae (= Themidaceae)

Scilloideae (= Hyacinthaceae)

The tree shown above can be divided into a basal paraphyletic group, the 'lower Asparagales (asparagoids)', from Orchidaceae to Asphodelaceae, [73] and a well-supported monophyletic group of 'core Asparagales' (higher asparagoids), comprising the two largest families, Amaryllidaceae sensu lato and Asparagaceae sensu lato. [1]

Two differences between these two groups (although with exceptions) are: the mode of microsporogenesis and the position of the ovary. The 'lower Asparagales' typically have simultaneous microsporogenesis (i.e. cell walls develop only after both meiotic divisions), which appears to be an apomorphy within the monocots, whereas the 'core Asparagales' have reverted to successive microsporogenesis (i.e. cell walls develop after each division). [62] The 'lower Asparagales' typically have an inferior ovary, whereas the 'core Asparagales' have reverted to a superior ovary. A 2002 morphological study by Rudall treated possessing an inferior ovary as a synapomorphy of the Asparagales, stating that reversions to a superior ovary in the 'core Asparagales' could be associated with the presence of nectaries below the ovaries. [74] However, Stevens notes that superior ovaries are distributed among the 'lower Asparagales' in such a way that it is not clear where to place the evolution of different ovary morphologies. The position of the ovary seems a much more flexible character (here and in other angiosperms) than previously thought. [1]

Changes to family structure in APG III

The APG III system when it was published in 2009, greatly expanded the families Xanthorrhoeaceae, Amaryllidaceae, and Asparagaceae. [10] Thirteen of the families of the earlier APG II system were thereby reduced to subfamilies within these three families. The expanded Xanthorrhoeaceae is now called "Asphodelaceae".[ citation needed ] The APG II families (left) and their equivalent APG III subfamilies (right) are as follows:

Asphodelaceae
Amaryllidaceae
Asparagaceae

Structure of Asparagales

Orchid clade

Orchidaceae is possibly the largest family of all angiosperms (only Asteraceae might - or might not - be more speciose) and hence by far the largest in the order. The Dahlgren system recognized three families of orchids, but DNA sequence analysis later showed that these families are polyphyletic and so should be combined. Several studies suggest (with high bootstrap support) that Orchidaceae is the sister of the rest of the Asparagales. [64] [65] [66] [75] Other studies have placed the orchids differently in the phylogenetic tree, generally among the Boryaceae-Hypoxidaceae clade. [76] [62] [57] [77] [78] The position of Orchidaceae shown above seems the best current hypothesis, [1] but cannot be taken as confirmed.

Orchids have simultaneous microsporogenesis and inferior ovaries, two characters that are typical of the 'lower Asparagales'. However, their nectaries are rarely in the septa of the ovaries, and most orchids have dust-like seeds, atypical of the rest of the order. (Some members of Vanilloideae and Cypripedioideae have crustose seeds, probably associated with dispersal by birds and mammals that are attracted by fermenting fleshy fruit releasing fragrant compounds, e.g. vanilla.)

In terms of the number of species, Orchidaceae diversification is remarkable, with recent estimations suggesting that despite the old origin of the family dating back to the late cretaceous [79] [80] , modern orchid diversity originated mostly during the last 5 million years [81] . However, although the other Asparagales may be less rich in species, they are more variable morphologically, including tree-like forms.

Boryaceae to Hypoxidaceae

The four families excluding Boryaceae form a well-supported clade in studies based on DNA sequence analysis. All four contain relatively few species, and it has been suggested that they be combined into one family under the name Hypoxidaceae sensu lato. [82] The relationship between Boryaceae (which includes only two genera, Borya and Alania ), and other Asparagales has remained unclear for a long time. The Boryaceae are mycorrhizal, but not in the same way as orchids. Morphological studies have suggested a close relationship between Boryaceae and Blandfordiaceae. [62] There is relatively low support for the position of Boryaceae in the tree shown above. [64]

Ixioliriaceae to Xeronemataceae

The relationship shown between Ixioliriaceae and Tecophilaeaceae is still unclear. Some studies have supported a clade of these two families, [64] others have not. [76] The position of Doryanthaceae has also varied, with support for the position shown above, [65] but also support for other positions. [64]

The clade from Iridaceae upwards appears to have stronger support. All have some genetic characteristics in common, having lost Arabidopsis-type telomeres. [83] Iridaceae is distinctive among the Asparagales in the unique structure of the inflorescence (a rhipidium), the combination of an inferior ovary and three stamens, and the common occurrence of unifacial leaves whereas bifacial leaves are the norm in other Asparagales.

Members of the clade from Iridaceae upwards have infra-locular septal nectaries, which Rudall interpreted as a driver towards secondarily superior ovaries. [74]

Asphodelaceae + 'core Asparagales'

The next node in the tree (Xanthorrhoeaceae sensu lato + the 'core Asparagales') has strong support. [84] 'Anomalous' secondary thickening occurs among this clade, e.g. in Xanthorrhoea (family Asphodelaceae) and Dracaena (family Asparagaceae sensu lato), with species reaching tree-like proportions.

The 'core Asparagales', comprising Amaryllidaceae sensu lato and Asparagaceae sensu lato, are a strongly supported clade, [65] as are clades for each of the families. Relationships within these broadly defined families appear less clear, particularly within the Asparagaceae sensu lato. Stevens notes that most of its subfamilies are difficult to recognize, and that significantly different divisions have been used in the past, so that the use of a broadly defined family to refer to the entire clade is justified. [1] Thus the relationships among subfamilies shown above, based on APWeb as of December 2010, is somewhat uncertain.

Evolution

Several studies have attempted to date the evolution of the Asparagales, based on phylogenetic evidence. Earlier studies [85] [86] generally give younger dates than more recent studies, [76] [87] which have been preferred in the table below.

Approx. date in
Millions of Years Ago
Event
133-120Origin of Asparagales, i.e. first divergence from other monocots [76] [87]
93Split between Asphodelaceae and the 'core group' Asparagales [76]
91–89Origin of Alliodeae and Asparagoideae [76]
47Divergence of Agavoideae and Nolinoideae [85]

A 2009 study suggests that the Asparagales have the highest diversification rate in the monocots, about the same as the order Poales, although in both orders the rate is little over half that of the eudicot order Lamiales, the clade with the highest rate. [87]

Comparison of family structures

The taxonomic diversity of the monocotyledons is described in detail by Kubitzki. [88] [89] Up-to-date information on the Asparagales can be found on the Angiosperm Phylogeny Website. [1]

The APG III system's family circumscriptions are being used as the basis of the Kew-hosted World Checklist of Selected Plant Families. [90] With this circumscription, the order consists of 14 families (Dahlgren had 31) [52] with approximately 1120 genera and 26000 species. [1]

Order Asparagales Link

The earlier 2003 version, APG II, allowed 'bracketed' families, i.e. families which could either be segregated from more comprehensive families or could be included in them. These are the families given under "including" in the list above. APG III does not allow bracketed families, requiring the use of the more comprehensive family; otherwise the circumscription of the Asparagales is unchanged. A separate paper accompanying the publication of the 2009 APG III system provided subfamilies to accommodate the families which were discontinued. [91] The first APG system of 1998 contained some extra families, included in square brackets in the list above.

Two older systems which use the order Asparagales are the Dahlgren system [61] and the Kubitzki system. [88] The families included in the circumscriptions of the order in these two systems are shown in the first and second columns of the table below. The equivalent family in the modern APG III system (see below) is shown in the third column. Note that although these systems may use the same name for a family, the genera which it includes may be different, so the equivalence between systems is only approximate in some cases.

Families included in Asparagales in three systems which use this order
Dahlgren systemKubitzki systemAPG III system
AgapanthaceaeAmaryllidaceae: Agapanthoideae
AgavaceaeAsparagaceae: Agavoideae
AlliaceaeAmaryllidaceae: Allioideae
AmaryllidaceaeAmaryllidaceae: Amaryllidoideae
AnemarrhenaceaeAsparagaceae: Agavoideae
AnthericaceaeAsparagaceae: Agavoideae
AphyllanthaceaeAsparagaceae: Aphyllanthoideae
AsparagaceaeAsparagaceae: Asparagoideae
AsphodelaceaeAsphodelaceae: Asphodeloideae
AsteliaceaeAsteliaceae
BehniaceaeAsparagaceae: Agavoideae
BlandfordiaceaeBlandfordiaceae
BoryaceaeBoryaceae
CalectasiaceaeNot in Asparagales (family Dasypogonaceae, unplaced as to order, clade commelinids)
ConvallariaceaeAsparagaceae: Nolinoideae
CyanastraceaeTecophilaeaceae
DasypogonaceaeNot in Asparagales (family Dasypogonaceae, unplaced as to order, clade commelinids)
DoryanthaceaeDoryanthaceae
DracaenaceaeAsparagaceae: Nolinoideae
EriospermaceaeAsparagaceae: Nolinoideae
HemerocallidaceaeAsphodelaceae: Hemerocallidoideae
HerreriaceaeAsparagaceae: Agavoideae
HostaceaeAsparagaceae: Agavoideae
HyacinthaceaeAsparagaceae: Scilloideae
HypoxidaceaeHypoxidaceae
IridaceaeIridaceae
IxioliriaceaeIxioliriaceae
JohnsoniaceaeAsphodelaceae: Hemerocallidoideae
LanariaceaeLanariaceae
LuzuriagaceaeNot in Asparagales (family Alstroemeriaceae, order Liliales)
LomandraceaeAsparagaceae: Lomandroideae
NolinaceaeAsparagaceae: Nolinoideae
OrchidaceaeOrchidaceae
PhilesiaceaeNot in Asparagales (family Philesiaceae, order Liliales)
PhormiaceaeAsphodelaceae: Hemerocallidoideae
RuscaceaeAsparagaceae: Nolinoideae
TecophilaeaceaeTecophilaeaceae
ThemidaceaeAsparagaceae: Brodiaeoideae
XanthorrhoeaceaeAsphodelaceae: Xanthorrhoeoideae

Uses

The Asparagales include many important crop plants and ornamental plants. Crops include Allium, Asparagus and Vanilla, while ornamentals include irises, hyacinths and orchids. [11]

See also

Notes

  1. The name 'Alliaceae' has also been used for the expanded family comprising the Alliaceae sensu stricto, Amaryllidaceae and Agapanthaceae (e.g. in the APG II system). 'Amaryllidaceae' is used as a conserved name in APG III.

Related Research Articles

<span class="mw-page-title-main">Dioscoreales</span> Order of lilioid monocotyledonous flowering plants

The Dioscoreales are an order of monocotyledonous flowering plants, organized under modern classification systems, such as the Angiosperm Phylogeny Group or the Angiosperm Phylogeny Web. Among monocot plants, Dioscoreales are grouped with the lilioid monocots, wherein they are a sister group to the Pandanales. In total, the order Dioscoreales comprises three families, 22 genera and about 850 species.

<span class="mw-page-title-main">Liliales</span> Order of monocot flowering plants, including lilies

Liliales is an order of monocotyledonous flowering plants in the Angiosperm Phylogeny Group and Angiosperm Phylogeny Web system, within the lilioid monocots. This order of necessity includes the family Liliaceae. The APG III system (2009) places this order in the monocot clade. In APG III, the family Luzuriagaceae is combined with the family Alstroemeriaceae and the family Petermanniaceae is recognized. Both the order Lililiales and the family Liliaceae have had a widely disputed history, with the circumscription varying greatly from one taxonomist to another. Previous members of this order, which at one stage included most monocots with conspicuous tepals and lacking starch in the endosperm are now distributed over three orders, Liliales, Dioscoreales and Asparagales, using predominantly molecular phylogenetics. The newly delimited Liliales is monophyletic, with ten families. Well known plants from the order include Lilium (lily), tulip, the North American wildflower Trillium, and greenbrier.

<span class="mw-page-title-main">Monocotyledon</span> Clade of flowering plants

Monocotyledons, commonly referred to as monocots, are grass and grass-like flowering plants (angiosperms), the seeds of which typically contain only one embryonic leaf, or cotyledon. They constitute one of the major groups into which the flowering plants have traditionally been divided; the rest of the flowering plants have two cotyledons and are classified as dicotyledons, or dicots.

<span class="mw-page-title-main">Brodiaeoideae</span> Subfamily of flowering plants

Brodiaeoideae are a monocot subfamily of flowering plants in the family Asparagaceae, order Asparagales. They have been treated as a separate family, Themidaceae. They are native to Central America and western North America, from British Columbia to Guatemala. The name of the subfamily is based on the type genus Brodiaea.

<span class="mw-page-title-main">Hemerocallidoideae</span> Subfamily of flowering plants

Hemerocallidoideae is a subfamily of flowering plants, part of the family Asphodelaceae sensu lato in the monocot order Asparagales according to the APG system of 2016. Earlier classification systems treated the group as a separate family, the Hemerocallidaceae. The name is derived from the generic name of the type genus, Hemerocallis. The largest genera in the group are Dianella, Hemerocallis (15), and Caesia (11).

<span class="mw-page-title-main">Scilloideae</span> Subfamily of bulbous monocot plants

Scilloideae is a subfamily of bulbous plants within the family Asparagaceae. Scilloideae is sometimes treated as a separate family Hyacinthaceae, named after the genus Hyacinthus. Scilloideae or Hyacinthaceae include many familiar garden plants such as Hyacinthus (hyacinths), Hyacinthoides (bluebells), Muscari and Scilla and Puschkinia. Some are important as cut flowers.

<span class="mw-page-title-main">Asphodelaceae</span> Family of flowering plants in the order Asparagales

Asphodelaceae is a family of flowering plants in the order Asparagales. Such a family has been recognized by most taxonomists, but the circumscription has varied widely. In its current circumscription in the APG IV system, it includes about 40 genera and 900 known species. The type genus is Asphodelus.

<span class="mw-page-title-main">Asparagaceae</span> Family of plants

Asparagaceae, known as the asparagus family, is a family of flowering plants, placed in the order Asparagales of the monocots. The family name is based on the edible garden asparagus, Asparagus officinalis. This family includes both common garden plants as well as common houseplants. The garden plants include asparagus, yucca, bluebell, and hosta, and the houseplants include snake plant, corn cane, spider plant, and plumosus fern.

<span class="mw-page-title-main">Campynemataceae</span> Family of flowering plants

Campynemataceae (Campynemaceae) is a family of flowering plants. The family consists of two genera and four species of perennial herbaceous plants endemic to New Caledonia and Tasmania.

<span class="mw-page-title-main">Lilianae</span> Order of flowering plants

Lilianae is a botanical name for a superorder of flowering plants. Such a superorder of necessity includes the type family Liliaceae. Terminations at the rank of superorder are not standardized by the International Code of Nomenclature for algae, fungi, and plants (ICN), although the suffix -anae has been proposed.

<span class="mw-page-title-main">Boryaceae</span> Family of flowering plants

Boryaceae is a family of highly drought-tolerant flowering plants native to Australia, placed in the order Asparagales of the monocots. The family includes two genera, with twelve species in total in Australia.

<span class="mw-page-title-main">Lilioid monocots</span> Grade of flowering plant orders, within Lilianae

Lilioid monocots is an informal name used for a grade of five monocot orders in which the majority of species have flowers with relatively large, coloured tepals. This characteristic is similar to that found in lilies ("lily-like"). Petaloid monocots refers to the flowers having tepals which all resemble petals (petaloid). The taxonomic terms Lilianae or Liliiflorae have also been applied to this assemblage at various times. From the early nineteenth century many of the species in this group of plants were put into a very broadly defined family, Liliaceae sensu lato or s.l.. These classification systems are still found in many books and other sources. Within the monocots the Liliaceae s.l. were distinguished from the Glumaceae.

<span class="mw-page-title-main">Amaryllidaceae</span> Family of flowering plants

The Amaryllidaceae are a family of herbaceous, mainly perennial and bulbous flowering plants in the monocot order Asparagales. The family takes its name from the genus Amaryllis and is commonly known as the amaryllis family. The leaves are usually linear, and the flowers are usually bisexual and symmetrical, arranged in umbels on the stem. The petals and sepals are undifferentiated as tepals, which may be fused at the base into a floral tube. Some also display a corona. Allyl sulfide compounds produce the characteristic odour of the onion subfamily (Allioideae).

<span class="mw-page-title-main">Amaryllidoideae</span> Subfamily of flowering plants

Amaryllidoideae is a subfamily of monocot flowering plants in the family Amaryllidaceae, order Asparagales. The most recent APG classification, APG III, takes a broad view of the Amaryllidaceae, which then has three subfamilies, one of which is Amaryllidoideae, and the others are Allioideae and Agapanthoideae. The subfamily consists of about seventy genera, with over eight hundred species, and a worldwide distribution.

<span class="mw-page-title-main">Taxonomy of Liliaceae</span> Classification of the lily family Liliaceae

The taxonomy of the plant family Liliaceae has had a complex history since its first description in the mid-eighteenth century. Originally, the Liliaceae were defined as having a "calix" (perianth) of six equal-coloured parts, six stamens, a single style, and a superior, three-chambered (trilocular) ovary turning into a capsule fruit at maturity. The taxonomic circumscription of the family Liliaceae progressively expanded until it became the largest plant family and also extremely diverse, being somewhat arbitrarily defined as all species of plants with six tepals and a superior ovary. It eventually came to encompass about 300 genera and 4,500 species, and was thus a "catch-all" and hence paraphyletic. Only since the more modern taxonomic systems developed by the Angiosperm Phylogeny Group (APG) and based on phylogenetic principles, has it been possible to identify the many separate taxonomic groupings within the original family and redistribute them, leaving a relatively small core as the modern family Liliaceae, with fifteen genera and 600 species.

The Asparagales are an order of plants, and on this page the structure of the order is used according to the APG III system. The order takes its name from the family Asparagaceae and is placed in the monocots. The order is clearly circumscribed on the basis of DNA sequence analysis, but is difficult to define morphologically, since its members are structurally diverse. The APG III system is used in World Checklist of Selected Plant Families from the Royal Botanical Gardens at Kew. With this circumscription, the order consists of 14 families with approximately 1120 genera and 26000 species.

<span class="mw-page-title-main">Allioideae</span> Large subfamily of flowering plants in the family Amaryllidaceae

Allioideae is a subfamily of monocot flowering plants in the family Amaryllidaceae, order Asparagales. It was formerly treated as a separate family, Alliaceae. The subfamily name is derived from the generic name of the type genus, Allium. It is composed of about 18 genera.

<span class="mw-page-title-main">Melanthiales</span> Extinct order of flowering plants

MelanthialesLink was an order of monocotyledons, whose name and botanical authority is derived by typification from the description of the type family, Melanthiaceae by Johann Heinrich Friedrich Link in 1829.

<span class="mw-page-title-main">Coronariae</span> Historical term for group of flowering plants, including lilies

Coronariae is a term used historically to refer to a group of flowering plants, generally including the lilies (Liliaceae), and later replaced by the order Liliales. First used in the 17th century by John Ray, it referred to flowers used to insert in garlands. Coronariae soon came to be associated with Liliaceae in the Linnaean system. The term was abandoned at the end of the 19th century, being replaced with Liliiflorae and then Liliales.

References

  1. 1 2 3 4 5 6 7 8 9 Stevens 2016, Asparagales
  2. Tropicos 2015
  3. LAPGIII 2009.
  4. 1 2 Bromhead 1838, p. 132
  5. 1 2 Chase 2004
  6. Judd, Walter S. (1997). "The Asphodelaceae in the Southeastern United States". Harvard Papers in Botany. 2 (1): 109–123. ISSN   1043-4534. JSTOR   41761540.
  7. Rudall 1995
  8. Furness & Rudall 1999
  9. Sýkorová et al. 2003
  10. 1 2 3 Chase et al 2009
  11. 1 2 Chen et al. 2013
  12. Link 1829, Asparaginae I: 272
  13. Linnaeus 1753, Aparagus vol. i p. 325
  14. Linnaeus 1753, Hexandria monogynia vol. i pp.  285–352
  15. Lobstein 2013
  16. Adanson 1763, Liliaceae: V Asparagi pp. 51–52
  17. Jussieu 1789
  18. Jussieu 1789, Stamina Perigynia p. 35
  19. Jussieu 1789, Asparagi pp. 40–43
  20. ICN 2011, Names of families and subfamilies, tribes and subtribes p. 18.2
  21. de Candolle 1813, Des familles et des tribus pp. 192–195
  22. Privat-Deschanel & Focillon 1870, Asparagi p. 291
  23. Jaume Saint-Hilaire 1805, Amaryllidées vol. 1. pp. 134–142
  24. Brown 1810, Prodromus. Amaryllideae p. 296
  25. de Candolle 1813, Théorie élémentaire de la botanique p. 219
  26. Gray 1821
  27. Gray 1821, p.vi
  28. Lindley 1830
  29. Lindley 1830, Endogenae, or Monocotyledonous Plants p. 251
  30. Lindley 1846
  31. Lindley 1846, Liliaceae – Lilyworts p. 200
  32. Lindley 1846, Amaryllidaceae – Amaryllids p. 155
  33. Bentham & Hooker 1883
  34. Bentham & Hooker 1883, Liliaceae p. 748
  35. Bentham & Hooker 1883, Amaryllideae p. 711
  36. Bentham & Hooker 1883, Allieae p. 798
  37. Stuessy 2009, Phyletic (evolutionary) classification p. 47
  38. Eichler 1886, Liliiflorae p. 34
  39. Engler & Prantl 1888
  40. Engler 1903
  41. Engler & Prantl 1888, Liliaceae II(5) pp. 10–91
  42. Engler & Prantl 1888, Amaryllidaceae II(5) pp. 97–124
  43. Engler 1903, Subfamily Allioideae p. 96
  44. Wettstein 1924, Liliiflorae p. 862
  45. Wettstein 1924, p.862
  46. Lotsy 1907–1911, Liliifloren: Asparaginaceae p. 743
  47. Huber 1969, Die asparagoiden Liliifloren p. 304
  48. Huber 1977
  49. Cronquist 1968
  50. Cronquist 1981
  51. Cronquist 1988
  52. 1 2 Dahlgren, Clifford & Yeo 1985, Order Asparagales
  53. Walters & Keil 1996
  54. Kelch 2002
  55. Mathew 1989
  56. 1 2 Angiosperm Phylogeny Group II 2003
  57. 1 2 Chase et al. 1995a.
  58. Rudall et al. (1995).
  59. Patterson & Givnish 2002
  60. 1 2 Angiosperm Phylogeny Group III 2009
  61. 1 2 Dahlgren, Clifford & Yeo 1985
  62. 1 2 3 4 Rudall 2002a
  63. Davis et al. 2004
  64. 1 2 3 4 5 Chase et al. 2006
  65. 1 2 3 4 Graham et al. 2006
  66. 1 2 Pires et al. 2006
  67. Hilu et al. 2003
  68. 1 2 Chase & Reveal 2009
  69. 1 2 Davis et al. 2013
  70. 1 2 Hertwick et al. 2015
  71. RBG 2010
  72. Hedges & Kumar 2009, p. 205.
  73. Rudall et al. 1997
  74. 1 2 Rudall 2002b
  75. Givnish et al. 2006
  76. 1 2 3 4 5 6 Janssen & Bremer 2004
  77. McPherson & Graham 2001
  78. Li & Zhou 2007
  79. Givnish, Thomas J.; Spalink, Daniel; Ames, Mercedes; Lyon, Stephanie P.; Hunter, Steven J.; Zuluaga, Alejandro; Iles, William J. D.; Clements, Mark A.; Arroyo, Mary T. K.; Leebens-Mack, James; Endara, Lorena; Kriebel, Ricardo; Neubig, Kurt M.; Whitten, W. Mark; Williams, Norris H. (7 September 2015). "Orchid phylogenomics and multiple drivers of their extraordinary diversification". Proceedings of the Royal Society B: Biological Sciences. 282 (1814): 20151553. doi:10.1098/rspb.2015.1553. ISSN   0962-8452. PMC   4571710 . PMID   26311671.
  80. Serna-Sánchez, Maria Alejandra; Pérez-Escobar, Oscar A.; Bogarín, Diego; Torres-Jimenez, María Fernanda; Alvarez-Yela, Astrid Catalina; Arcila-Galvis, Juliana E.; Hall, Climbie F.; de Barros, Fábio; Pinheiro, Fábio; Dodsworth, Steven; Chase, Mark W.; Antonelli, Alexandre; Arias, Tatiana (25 March 2021). "Plastid phylogenomics resolves ambiguous relationships within the orchid family and provides a solid timeframe for biogeography and macroevolution". Scientific Reports. 11 (1): 6858. Bibcode:2021NatSR..11.6858S. doi:10.1038/s41598-021-83664-5. ISSN   2045-2322. PMC   7994851 . PMID   33767214.
  81. Pérez-Escobar, Oscar A.; Bogarín, Diego; Przelomska, Natalia A. S.; Ackerman, James D.; Balbuena, Juan A.; Bellot, Sidonie; Bühlmann, Roland P.; Cabrera, Betsaida; Cano, Jose Aguilar; Charitonidou, Martha; Chomicki, Guillaume; Clements, Mark A.; Cribb, Phillip; Fernández, Melania; Flanagan, Nicola S. (April 2024). "The origin and speciation of orchids". New Phytologist. 242 (2): 700–716. doi:10.1111/nph.19580. ISSN   0028-646X. PMID   38382573.
  82. Soltis et al. 2005
  83. Fay et al 2000
  84. Chase et al. 2000
  85. 1 2 Eguiarte 1995
  86. Wikström, Savolainen & Chase 2001
  87. 1 2 3 Magallón & Castillo 2009
  88. 1 2 Kubitzki 1998
  89. Kubitzki 2006
  90. WCSP 2010
  91. Chase, Reveal & Fay 2009

Bibliography

Books

Chapters

  • Chase, M. W.; Duvall, M. R.; Hills, H. G.; Conran, J. G.; Cox, A. V.; Eguiarte, L. E.; Hartwell, J.; Fay, M. F.; Caddick, L. R.; Cameron, K. M.; Hoot, S., Molecular phylogenetics of Lilianae, pp. 109–137, in Rudall et al. (1995)
  • Davis, Jerrold I.; Mcneal, Joel R.; Barrett, Craig F.; Chase, Mark W.; Cohen, James I.; Duvall, Melvin R.; Givnish, Thomas J.; Graham, Sean W.; Petersen, Gitte; Pires, J. Chris; Seberg, Ole; Stevenson, Dennis W.; Leebens-Mack, Jim (2013), "Contrasting patterns of support among plastid genes and genomes for major clades of the monocotyledons", Early Events in Monocot Evolution: 315–349, doi:10.1017/CBO9781139002950.015, ISBN   9781139002950, in Wilkin & Mayo (2013)
  • Fay, M.F.; Rudall, PJ; Sullivan, S; Stobart, KL; de Bruijn, AY; Reeves, G; Qamaruz-Zaman, F; Hong, W-P; Joseph, J; Hahn, WJ; Conran, JG; Chase, MW (19 May 2000), Phylogenetic studies of Asparagales based on four plastid DNA regions, Csiro, pp. 360–371, ISBN   9780643099296, in Wilson & Morrison (2000)
  • Nadot, S.; Penet, L.; Dreyer, L. D.; Forchioni, A.; Ressayre, A. (2006), Aperture pattern and microsporogenesis in Asparagales., pp. 197–203, in Columbus et al. (2006)
  • Seberg, Ole (2007), "Xanthorrhoeaceae", in Heywood, Vernon H.; Brummitt, Richard K.; Seberg, Ole & Culham, Alastair (eds.), Flowering Plant Families of the World, Ontario, Canada: Firefly Books, pp. 406–407
  • Soltis, D.E.; Soltis, P.F.; Endress, P.K. & Chase, M.W. (2005), "Asparagales", Phylogeny and evolution of angiosperms, Sunderland, MA: Sinauer Associates, pp. 104–109

Articles

APG

Historical sources

Websites

Reference materials