Ericales

Last updated

Ericales
RhododendronSimsiiFlowers2.jpg
Rhododendron simsii
Scientific classification OOjs UI icon edit-ltr.svg
Kingdom: Plantae
Clade: Tracheophytes
Clade: Angiosperms
Clade: Eudicots
Clade: Asterids
Order: Ericales
Bercht. & J.Presl [1]
Families

The Ericales are a large and diverse order of dicotyledons. Species in this order have considerable commercial importance including for tea, persimmon, blueberry, kiwifruit, Brazil nuts, argan, cranberry, sapote, and azalea. The order includes trees, bushes, lianas, and herbaceous plants. Together with ordinary autophytic plants, the Ericales include chlorophyll-deficient mycoheterotrophic plants (e.g., Sarcodes sanguinea ) and carnivorous plants (e.g., genus Sarracenia ).

Contents

Many species have five petals, often grown together. Fusion of the petals as a trait was traditionally used to place the order in the subclass Sympetalae. [2]

Mycorrhizal associations are quite common among the order representatives, and three kinds of mycorrhiza are found exclusively among Ericales (namely, ericoid, arbutoid and monotropoid mycorrhiza). In addition, some families among the order are notable for their exceptional ability to accumulate aluminum. [3]

Ericales are a cosmopolitan order. Areas of distribution of families vary largely – while some are restricted to tropics, others exist mainly in Arctic or temperate regions. The entire order contains over 8,000 species, of which the Ericaceae account for 2,000–4,000 species (by various estimates).

According to molecular studies, the lineage that led to Ericales diverged from other plants about 127 million years [4] or diversified 110 million years ago. [5]

Economic importance

The most commercially used plant in the order is tea (Camellia sinensis) from the family Theaceae. The order also includes some edible fruits, including kiwifruit (esp. Actinidia deliciosa ), persimmon (genus Diospyros), blueberry, huckleberry, cranberry, Brazil nut, and Mamey sapote. The order also includes shea (Vitellaria paradoxa), which is the major dietary lipid source for millions of sub-Saharan Africans. Many Ericales species are cultivated for their showy flowers: well-known examples are azalea, rhododendron, camellia, heather, polyanthus, cyclamen, phlox, and busy Lizzie.

Classification

Simplified phylogeny based on EricalesRose2018.png
Simplified phylogeny based on

These families are recognized in the APG III system [1] as members of the Ericales:

Likely phylogenetic relationships between the families of the Ericales: [6]

Ericales

Previously included families

These families are not recognized in the APG III system [1] but have been in common use in the recent past:

These make up an early diverging group of asterids. [7] Under the Cronquist system, the Ericales included a smaller group of plants, which were placed among the Dilleniidae:

See also

Related Research Articles

<span class="mw-page-title-main">Ericaceae</span> Heather family of flowering plants

The Ericaceae are a family of flowering plants, commonly known as the heath or heather family, found most commonly in acidic and infertile growing conditions. The family is large, with about 4,250 known species spread across 124 genera, making it the 14th most species-rich family of flowering plants. The many well known and economically important members of the Ericaceae include the cranberry, blueberry, huckleberry, rhododendron, and various common heaths and heathers.

<span class="mw-page-title-main">Gentianales</span> Order of flowering plant

Gentianales is an order of flowering plant, included within the asterid clade of eudicots. It comprises more than 20,000 species in about 1,200 genera in 5 families. More than 80% of the species in this order belong to the family Rubiaceae.

<span class="mw-page-title-main">Actinidiaceae</span> Family of flowering plants

The Actinidiaceae are a small family of flowering plants. The family has three genera and about 360 species and is a member of the order Ericales.

<span class="mw-page-title-main">Primulaceae</span> Family of flowering plants that includes the primroses

The Primulaceae, commonly known as the primrose family, are a family of herbaceous and woody flowering plants including some favourite garden plants and wildflowers. Most are perennial though some species, such as scarlet pimpernel, are annuals.

<span class="mw-page-title-main">Theaceae</span> Family of flowering plants

Theaceae, the tea family, is a family of flowering plants comprising shrubs and trees, including the economically important tea plant, and the ornamental camellias. It can be described as having from seven to 40 genera, depending on the source and the method of circumscription used. The family Ternstroemiaceae has been included within Theaceae; however, the APG III system of 2009 places it instead in Pentaphylacaceae. Most but not all species are native to China and East Asia.

<span class="mw-page-title-main">Myrsinoideae</span> Subfamily of plants, including Cyclamen

Myrsinoideae is a subfamily of the family Primulaceae in the order Ericales. It was formerly recognized as the family Myrsinaceae, or the myrsine family, consisting of 35 genera and about 1000 species. It is widespread in temperate to tropical climates extending north to Europe, Siberia, Japan, Mexico, and Florida, and south to New Zealand, South America, and South Africa.

Asteridae is an obsolete botanical name at the rank of subclass. Composition of the subclass has also varied; however, by definition it always includes the family Asteraceae (Compositae). In the modern APG IV system of classification, asterid and euasterid are names for clades with a composition similar to that of Asteridae.

<span class="mw-page-title-main">Clethraceae</span> Family of flowering plants

The Clethraceae are a small family of flowering plants in the order Ericales, composed of two genera, Clethra and Purdiaea, with approximately 75 species. They are native to warm temperate to tropical regions of Asia and the Americas, with one species also on Madeira.

<span class="mw-page-title-main">Eudicots</span> Clade of flowering plants

The eudicots, Eudicotidae, or eudicotyledons are a clade of flowering plants (angiosperms) which are mainly characterized by having two seed leaves (cotyledons) upon germination. The term derives from dicotyledon. Historically, authors have used the terms tricolpates or non-magnoliid dicots. The current botanical terms were introduced in 1991, by evolutionary botanist James A. Doyle and paleobotanist Carol L. Hotton, to emphasize the later evolutionary divergence of tricolpate dicots from earlier, less specialized, dicots.

<span class="mw-page-title-main">Asterids</span> Clade of eudicot angiosperms

In the APG IV system (2016) for the classification of flowering plants, the name asterids denotes a clade. Asterids is the largest group of flowering plants, with more than 80,000 species, about a third of the total flowering plant species. Well-known plants in this clade include the common daisy, forget-me-nots, nightshades, the common sunflower, petunias, yacon, morning glory, lettuce, sweet potato, coffee, lavender, lilac, olive, jasmine, honeysuckle, ash tree, teak, snapdragon, sesame, psyllium, garden sage, blueberries, table herbs such as mint, basil, and rosemary, and rainforest trees such as Brazil nut.

<span class="mw-page-title-main">Sympetalae</span> Historical subclass of flowering plants with fused petals

Sympetally is a flower characteristic that historically was used to classify a grouping of plants termed Sympetalae, but this term has been abandoned in newer molecular based classifications, although the grouping has similarity to the modern term asterids.

The APG system of plant classification is the first version of a modern, mostly molecular-based, system of plant taxonomy. Published in 1998 by the Angiosperm Phylogeny Group, it was replaced by the improved APG II in 2003, APG III system in 2009 and APG IV system in 2016.

The APG II system of plant classification is the second, now obsolete, version of a modern, mostly molecular-based, system of plant taxonomy that was published in April 2003 by the Angiosperm Phylogeny Group. It was a revision of the first APG system, published in 1998, and was superseded in 2009 by a further revision, the APG III system.

<span class="mw-page-title-main">Theophrastoideae</span> Subfamily of flowering plant family Primulaceae

Theophrastoideae is a small subfamily of flowering plants in the family Primulaceae. It was formerly recognized as a separate family Theophrastaceae. As previously circumscribed, the family consisted of eight genera and 95 species of trees or shrubs, native to tropical regions of the Americas.

A system of plant taxonomy, the Bessey system was published by Charles Bessey in 1915.

<i>Pentaphylax</i> Genus of flowering plants

Pentaphylax euryoides is a species of flowering plant in the Pentaphylacaceae family. It is the sole species in genus Pentaphylax. It is a shrub or small tree native to southern China, Vietnam, Laos, Peninsular Malaysia, and northern Sumatra. In China, it is found in Guangdong, Guangxi, Guizhou, Hainan, and Yunnan provinces, and in southern parts of Fujian, Hunan, and Jiangxi.

<span class="mw-page-title-main">Caryophyllales</span> Order of flowering plants

Caryophyllales is a diverse and heterogeneous order of flowering plants that includes the cacti, carnations, amaranths, ice plants, beets, and many carnivorous plants. Many members are succulent, having fleshy stems or leaves. The betalain pigments are unique in plants of this order and occur in all its core families with the exception of Caryophyllaceae and Molluginaceae. Noncore families, such as Nepenthaceae, instead produce anthocyanins.

When the APG II system of plant classification was published in April 2003, fifteen genera and three families were placed incertae sedis in the angiosperms, and were listed in a section of the appendix entitled "Taxa of uncertain position".

The APG III system of flowering plant classification is the third version of a modern, mostly molecular-based, system of plant taxonomy being developed by the Angiosperm Phylogeny Group (APG). Published in 2009, it was superseded in 2016 by a further revision, the APG IV system.

References

  1. 1 2 3 Angiosperm Phylogeny Group (2009). "An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG III". Botanical Journal of the Linnean Society. 161 (2): 105–121. doi: 10.1111/j.1095-8339.2009.00996.x . hdl: 10654/18083 .
  2. Robyns, W. (31 December 1972). "Outline of a New System of Orders and Families of Sympetalae". Bulletin du Jardin Botanique National de Belgique. 42 (4): 363–372. doi:10.2307/3667661. JSTOR   3667661.
  3. (Jansen et al., 2004).
  4. Bremer, K.; Friis, E. M.; Bremer, B. (2004). "Molecular phylogenetic dating of asterid flowering plants shows early Cretaceous diversification". Systematic Biology. 53 (3): 496–505. doi: 10.1080/10635150490445913 . ISSN   1063-5157. PMID   15503676.
  5. 1 2 Rose, Jeffrey P.; Kleist, Thomas J.; Löfstrand, Stefan D.; Drew, Bryan T.; Schönenberger, Jürg; Sytsma, Kenneth J. (1 May 2018). "Phylogeny, historical biogeography, and diversification of angiosperm order Ericales suggest ancient Neotropical and East Asian connections". Molecular Phylogenetics and Evolution. 122: 59–79. doi:10.1016/j.ympev.2018.01.014. ISSN   1055-7903. PMID   29410353.
  6. Soltis, Douglas; Soltis, Pamela; Endress, Peter; Chase, Mark W.; Manchester, Steven; Judd, Walter; Majure, Lucas; Mavrodiev, Evgeny (2018). Phylogeny and Evolution of the Angiosperms (p. 262). University of Chicago Press. Kindle Edition. LCCN   2016046547.
  7. Bremer, Birgitta; Kåre Bremera; Nahid Heidaria; Per Erixona; Richard G. Olmsteadb; Arne A. Anderbergc; Mari Källersjöd; Edit Barkhordarian (August 2002). "Phylogenetics of asterids based on 3 coding and 3 non-coding chloroplast DNA markers and the utility of non-coding DNA at higher taxonomic levels". Molecular Phylogenetics and Evolution. 24 (2): 274–301. doi:10.1016/S1055-7903(02)00240-3. PMID   12144762.

Bibliography