Dicotyledon

Last updated

Dicotyledon
Lamium album (1).JPG
Lamium album (white dead nettle)
Scientific classification OOjs UI icon edit-ltr.svg
Kingdom: Plantae
Clade: Tracheophytes
Clade: Spermatophytes
Clade: Angiosperms
Groups included
Cladistically included but traditionally excluded taxa
Synonyms
Dicotyledon plantlet Dicotyledon plant-let.jpg
Dicotyledon plantlet
Young castor oil plant showing its prominent two embryonic leaves (cotyledons), which differ from the adult leaves Young castor bean plant showing prominent cotyledons.jpg
Young castor oil plant showing its prominent two embryonic leaves (cotyledons), which differ from the adult leaves

The dicotyledons, also known as dicots (or, more rarely, dicotyls), [2] are one of the two groups into which all the flowering plants (angiosperms) were formerly divided. The name refers to one of the typical characteristics of the group: namely, that the seed has two embryonic leaves or cotyledons. There are around 200,000  species within this group. [3] The other group of flowering plants were called monocotyledons (or monocots), typically each having one cotyledon. Historically, these two groups formed the two divisions of the flowering plants.

Contents

Largely from the 1990s onwards, molecular phylogenetic research confirmed what had already been suspected: that dicotyledons are not a group made up of all the descendants of a common ancestor (i.e., they are not a monophyletic group). Rather, a number of lineages, such as the magnoliids and groups now collectively known as the basal angiosperms, diverged earlier than the monocots did; in other words, monocots evolved from within the dicots, as traditionally defined. The traditional dicots are thus a paraphyletic group. [4]

The eudicots are the largest monophyletic group within the dicotyledons. They are distinguished from all other flowering plants by the structure of their pollen. Other dicotyledons and the monocotyledons have monosulcate pollen (or derived forms): grains with a single sulcus. Contrastingly, eudicots have tricolpate pollen (or derived forms): grains with three or more pores set in furrows called colpi.

Comparison with monocotyledons

Aside from cotyledon number, other broad differences have been noted between monocots and dicots, although these have proven to be differences primarily between monocots and eudicots. Many early-diverging dicot groups have monocot characteristics such as scattered vascular bundles, trimerous flowers, and non-tricolpate pollen. [5] In addition, some monocots have dicot characteristics such as reticulated leaf veins. [5]

FeatureIn monocotsIn dicots
Number of parts of each flowerIn threes (flowers are trimerous)In fours or fives (tetramerous or pentamerous)
Number of furrows or pores in pollenOneThree
Number of cotyledons (leaves in the seed)OneTwo
Arrangement of vascular bundles in the stem ScatteredIn concentric circles
RootsAre adventitious Develop from the radicle
Arrangement of major leaf veins Parallel Reticulate
Secondary growth AbsentOften present
Stomata Present on both the upper and lower epidermis of leavesMore common on the lower epidermis of leaves
Comparison of monocots and dicots
Monocot vs Dicot.svg

Classification

Phylogeny

The consensus phylogenetic tree used in the APG IV system shows that the group traditionally treated as the dicots is paraphyletic to the monocots: [6] [7]

angiosperms traditional dicots

Historical

Traditionally, the dicots have been called the Dicotyledones (or Dicotyledoneae), at any rank. If treated as a class, as they are within the Cronquist system, they could be called the Magnoliopsida after the type genus Magnolia . In some schemes, the eudicots were either treated as a separate class, the Rosopsida (type genus Rosa), or as several separate classes. The remaining dicots (palaeodicots or basal angiosperms) may be kept in a single paraphyletic class, called Magnoliopsida, or further divided. Some botanists prefer to retain the dicotyledons as a valid class, arguing its practicality and that it makes evolutionary sense. [8]

APG vs. Cronquist

The following lists show the orders in the Angiosperm Phylogeny Group APG IV system traditionally called dicots, [7] together with the older Cronquist system.

APG IV
(paraphyletic)
Cronquist system
(classis Magnoliopsida)
Magnoliidae (mostly basal dicots)
Hamamelidae
Caryophyllidae
Dilleniidae
Rosidae
Asteridae

Dahlgren and Thorne systems

Under the Dahlgren and Thorne systems, the subclass name Magnoliidae was used for the dicotyledons. This is also the case in some of the systems derived from the Cronquist system.[ citation needed ] These two systems are contrasted in the table below in terms of how each categorises by superorder; note that the sequence within each system has been altered in order to pair corresponding taxa

The Thorne system (1992) as depicted by Reveal is:

Dahlgren system Thorne system
Magnolianae

Ranunculanae

Magnolianae

Rafflesianae

Nymphaeanae Nymphaeanae
Caryophyllanae Caryophyllanae
Theanae

Plumbaginanae
Polygonanae
Primulanae
Ericanae

Theanae
Malvanae Malvanae
Violanae Violanae
Rosanae Rosanae
Proteanae Proteanae
Myrtanae Myrtanae
Rutanae Rutanae

Celastranae
Geranianae

Santalanae Santalanae
Balanophoranae Santalanae
Asteranae Asteranae
Solananae Solananae
Cornanae

Vitanae

Cornanae

Aralianae

Loasanae Loasanae
Gentiananae

Lamianae

Gentiananae

There exist variances between the superorders circumscribed from each system. Namely, although the systems share common names for many of the listed superorders, the specific list orders classified within each varies. For example, Thorne's Theanae corresponds to five distinct superorders under Dahlgren's system, only one of which is called Theanae.

See also

Related Research Articles

<span class="mw-page-title-main">Alismatales</span> Order of herbaceous flowering plants of marshy and aquatic habitats

The Alismatales (alismatids) are an order of flowering plants including about 4,500 species. Plants assigned to this order are mostly tropical or aquatic. Some grow in fresh water, some in marine habitats. Perhaps the most important food crop in the order is the taro plant, Colocasia esculenta.

<span class="mw-page-title-main">Arecales</span> Order of flowering plants

Arecales is an order of flowering plants. The order has been widely recognised only for the past few decades; until then, the accepted name for the order including these plants was Principes.

<span class="mw-page-title-main">Dioscoreales</span> Order of lilioid monocotyledonous flowering plants

The Dioscoreales are an order of monocotyledonous flowering plants, organized under modern classification systems, such as the Angiosperm Phylogeny Group or the Angiosperm Phylogeny Web. Among monocot plants, Dioscoreales are grouped with the lilioid monocots, wherein they are a sister group to the Pandanales. In total, the order Dioscoreales comprises three families, 22 genera and about 850 species.

<span class="mw-page-title-main">Liliales</span> Order of monocot flowering plants, including lilies

Liliales is an order of monocotyledonous flowering plants in the Angiosperm Phylogeny Group and Angiosperm Phylogeny Web system, within the lilioid monocots. This order of necessity includes the family Liliaceae. The APG III system (2009) places this order in the monocot clade. In APG III, the family Luzuriagaceae is combined with the family Alstroemeriaceae and the family Petermanniaceae is recognized. Both the order Lililiales and the family Liliaceae have had a widely disputed history, with the circumscription varying greatly from one taxonomist to another. Previous members of this order, which at one stage included most monocots with conspicuous tepals and lacking starch in the endosperm are now distributed over three orders, Liliales, Dioscoreales and Asparagales, using predominantly molecular phylogenetics. The newly delimited Liliales is monophyletic, with ten families. Well known plants from the order include Lilium (lily), tulip, the North American wildflower Trillium, and greenbrier.

<span class="mw-page-title-main">Magnoliales</span> Basal order of flowering plants

The Magnoliales are an order of flowering plants.

<span class="mw-page-title-main">Nymphaeales</span> Order of flowering plants

The Nymphaeales are an order of flowering plants, consisting of three families of aquatic plants, the Hydatellaceae, the Cabombaceae, and the Nymphaeaceae. It is one of the three orders of basal angiosperms, an early-diverging grade of flowering plants. At least 10 morphological characters unite the Nymphaeales. One of the traits is the absence of a vascular cambium, which is required to produce both xylem (wood) and phloem, which therefore are missing. Molecular synapomorphies are also known.

<span class="mw-page-title-main">Monocotyledon</span> Clade of flowering plants

Monocotyledons, commonly referred to as monocots, are grass and grass-like flowering plants (angiosperms), the seeds of which typically contain only one embryonic leaf, or cotyledon. They constitute one of the major groups into which the flowering plants have traditionally been divided; the rest of the flowering plants have two cotyledons and are classified as dicotyledons, or dicots.

<span class="mw-page-title-main">Magnoliopsida</span> Class of flowering plants

Magnoliopsida is a valid botanical name for a class of flowering plants. By definition the class will include the family Magnoliaceae, but its circumscription can otherwise vary, being more inclusive or less inclusive depending upon the classification system being discussed.

<span class="mw-page-title-main">Ranunculales</span> Basal order of flowering plants in the eudicots

Ranunculales is an order of flowering plants. Of necessity it contains the family Ranunculaceae, the buttercup family, because the name of the order is based on the name of a genus in that family. Ranunculales belongs to a paraphyletic group known as the basal eudicots. It is the most basal clade in this group; in other words, it is sister to the remaining eudicots. Widely known members include poppies, barberries, hellebores, and buttercups.

<span class="mw-page-title-main">Proteales</span> Order of eudicot flowering plants

Proteales is an order of flowering plants consisting of three families. The Proteales have been recognized by almost all taxonomists.

<span class="mw-page-title-main">Nelumbonaceae</span> Family of flowering plants

Nelumbonaceae is a family of aquatic flowering plants. Nelumbo is the sole extant genus, containing Nelumbo lutea, native to North America, and Nelumbo nucifera, widespread in Asia. At least five other genera, Nelumbites, Exnelumbites, Paleonelumbo, Nelumbago, and Notocyamus are known from fossils.

<span class="mw-page-title-main">Eudicots</span> Clade of flowering plants

The eudicots, Eudicotidae, or eudicotyledons are a clade of flowering plants (angiosperms) which are mainly characterized by having two seed leaves (cotyledons) upon germination. The term derives from dicotyledon. Previously, they were called tricolpates or non-magnoliid dicots by past authors. The current botanical terms were introduced in 1991, by evolutionary botanist James A. Doyle and paleobotanist Carol L. Hotton, to emphasize the later evolutionary divergence of tricolpate dicots from earlier, less specialized, dicots.

<span class="mw-page-title-main">Chloranthaceae</span> Family of flowering plants

Chloranthaceae is a family of flowering plants (angiosperms), the only family in the order Chloranthales. It is not closely related to any other family of flowering plants, and is among the early-diverging lineages in the angiosperms. They are woody or weakly woody plants occurring in Southeast Asia, the Pacific, Madagascar, Central and South America, and the West Indies. The family consists of four extant genera, totalling about 77 known species according to Christenhusz and Byng in 2016. Some species are used in traditional medicine. The type genus is Chloranthus. The fossil record of the family, mostly represented by pollen such as Clavatipollenites, extends back to the dawn of the history of flowering plants in the Early Cretaceous, and has been found on all continents.

<span class="mw-page-title-main">Trimeniaceae</span> Family of flowering plants

Trimeniaceae is a family of flowering plants recognized by most taxonomists, at least for the past several decades. It is a small family of one genus, Trimenia, with eight known species of woody plants, bearing essential oils. The family is subtropical to tropical and found in Southeast Asia, eastern Australia and on several Pacific Islands.

Plant taxonomy is the science that finds, identifies, describes, classifies, and names plants. It is one of the main branches of taxonomy.

<span class="mw-page-title-main">Commelinids</span> Clade of monocot flowering plants

In plant taxonomy, commelinids is a clade of flowering plants within the monocots, distinguished by having cell walls containing ferulic acid.

<span class="mw-page-title-main">Lilianae</span> Order of flowering plants

Lilianae is a botanical name for a superorder of flowering plants. Such a superorder of necessity includes the type family Liliaceae. Terminations at the rank of superorder are not standardized by the International Code of Nomenclature for algae, fungi, and plants (ICN), although the suffix -anae has been proposed.

<span class="mw-page-title-main">Magnoliids</span> Clade of flowering plants

Magnoliids, Magnoliidae or Magnolianae are a clade of flowering plants. With more than 10,000 species, including magnolias, nutmeg, bay laurel, cinnamon, avocado, black pepper, tulip tree and many others, it is the third-largest group of angiosperms after the eudicots and monocots. The group is characterized by trimerous flowers, pollen with one pore, and usually branching-veined leaves.

<span class="mw-page-title-main">Basal angiosperms</span> Descendants of most extant flowering plants

The basal angiosperms are the flowering plants which diverged from the lineage leading to most flowering plants. In particular, the most basal angiosperms were called the ANITA grade, which is made up of Amborella, Nymphaeales and Austrobaileyales.

<span class="mw-page-title-main">Lilioid monocots</span> Grade of flowering plant orders, within Lilianae

Lilioid monocots is an informal name used for a grade of five monocot orders in which the majority of species have flowers with relatively large, coloured tepals. This characteristic is similar to that found in lilies ("lily-like"). Petaloid monocots refers to the flowers having tepals which all resemble petals (petaloid). The taxonomic terms Lilianae or Liliiflorae have also been applied to this assemblage at various times. From the early nineteenth century many of the species in this group of plants were put into a very broadly defined family, Liliaceae sensu lato or s.l.. These classification systems are still found in many books and other sources. Within the monocots the Liliaceae s.l. were distinguished from the Glumaceae.

References

  1. Takhtajan, A. (June 1964), "The Taxa of the Higher Plants above the Rank of Order", Taxon , 13 (5): 160–164, doi:10.2307/1216134, JSTOR   1216134
  2. "Dicotyl", The Free Dictionary, retrieved 2 January 2016
  3. Hamilton, Alan; Hamilton, Patrick (2006), Plant conservation: An ecosystem approach, London: Earthscan, p. 2, ISBN   978-1-84407-083-1
  4. Simpson, Michael G. (2011), "Chapter 7: Diversity and Classification of Flowering Plants", Plant Systematics, Elsevier, p. 139, ISBN   978-0-0805-1404-8
  5. 1 2 Monocots versus Dicots, University of California Museum of Paleontology , retrieved 25 January 2012
  6. Cole, Theodor C.H.; Hilger, Hartmut H. & Stevens, Peter F. (2017), Angiosperm Phylogeny Poster - Flowering Plant Systematics (PDF), archived from the original (PDF) on 2017-05-17, retrieved 2017-07-13
  7. 1 2 Angiosperm Phylogeny Group (2016), "An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV", Botanical Journal of the Linnean Society , 181 (1): 1–20, doi: 10.1111/boj.12385
  8. Stuessy, Tod F. (2010), "Paraphyly and the origin and classification of angiosperms." (PDF), Taxon, 59 (3): 689–693, doi:10.1002/tax.593001