Wing

Last updated
Two different planforms are shown with a swept wing KC-10 Extender (top) refueling a trapezoidal-wing F-22 Raptor Wing.two.arp.600pix.jpg
Two different planforms are shown with a swept wing KC-10 Extender (top) refueling a trapezoidal-wing F-22 Raptor

A wing is a type of fin that produces both lift and drag while moving through air. Wings are defined by two shape characteristics, an airfoil section and a planform. Wing efficiency is expressed as lift-to-drag ratio, which compares the benefit of lift with the air resistance of a given wing shape, as it flies. Aerodynamics is the study of wing performance in air.

Contents

Equivalent foils that move through water are found on hydrofoil power vessels and foiling sailboats that lift out of the water at speed and on submarines that use diving planes to point the boat upwards or downwards, while running submerged. Hydrodynamics is the study of foil performance in water.

Etymology and usage

The word "wing" from the Old Norse vængr [1] for many centuries referred mainly to the foremost limbs of birds (in addition to the architectural aisle). But in recent centuries the word's meaning has extended to include lift producing appendages of insects, bats, pterosaurs, boomerangs, some sail boats and aircraft, or the airfoil on a race car. [2]

In nature

In nature wings have evolved in dinosaurs, birds (see Bird wing), mammals, fish, reptiles and plants as means of locomotion.[ citation needed ] Various species of penguins and other flighted or flightless water birds such as auks, cormorants, guillemots, shearwaters, eider and scoter ducks and diving petrels are efficient underwater swimmers, and use their wings to propel through water. [3]

Aerodynamics

Condensation in the low pressure region over the wing of an Airbus A340, passing through humid air Cloud over A340 wing.JPG
Condensation in the low pressure region over the wing of an Airbus A340, passing through humid air
Flaps (green) are used in various configurations to increase the wing area and to increase the lift. In conjunction with spoilers (red), flaps maximize drag and minimize lift during the landing roll. Aircraft flaps.svg
Flaps (green) are used in various configurations to increase the wing area and to increase the lift. In conjunction with spoilers (red), flaps maximize drag and minimize lift during the landing roll.

The design and analysis of the wings of aircraft is one of the principal applications of the science of aerodynamics, which is a branch of fluid mechanics. The properties of the airflow around any moving object can be found by solving the Navier-Stokes equations of fluid dynamics. Except for simple geometries, these equations are difficult to solve. [4] Simpler explanations can be given

For a wing to produce "lift", it must be oriented at a suitable angle of attack relative to the flow of air past the wing. When this occurs, the wing deflects the airflow downwards, "turning" the air as it passes the wing. Since the wing exerts a force on the air to change its direction, the air must exert a force on the wing, equal in size but opposite in direction. This force arises from different air pressures that exist on the upper and lower surfaces of the wing. [5] [6] [7]

Lower-than-ambient air pressure is generated on the top surface of the wing, with a higher-than ambient-pressure on the bottom of the wing. (See: airfoil) These air pressure differences can be either measured using a pressure-measuring device, or can be calculated from the airspeed] using physical principles—including Bernoulli's principle, which relates changes in air speed to changes in air pressure.

The lower air pressure on the top of the wing generates a smaller downward force on the top of the wing than the upward force generated by the higher air pressure on the bottom of the wing. This gives an upward force on the wing. This force is called the lift generated by the wing.

The different velocities of the air passing by the wing, the air pressure differences, the change in direction of the airflow, and the lift on the wing are different ways of describing how lift is produced so it is possible to calculate lift from any one of the other three. For example, the lift can be calculated from the pressure differences, or from different velocities of the air above and below the wing, or from the total momentum change of the deflected air. Fluid dynamics offers other approaches to solving these problems—and all produce the same answers if done correctly. Given a particular wing and its velocity through the air, debates over which mathematical approach is the most convenient to use can be mistaken by those not familiar with the study of aerodynamics as differences of opinion about the basic principles of flight. [8]

Cross-sectional shape

Wings with an asymmetrical cross-section are the norm in subsonic flight. Wings with a symmetrical cross-section can also generate lift by using a positive angle of attack to deflect air downward. Symmetrical airfoils have higher stalling speeds than cambered airfoils of the same wing area [9] but are used in aerobatic aircraft as they provide the same flight characteristics whether the aircraft is upright or inverted. [10] Another example comes from sailboats, where the sail is a thin sheet. [11]

For flight speeds near the speed of sound (transonic flight), specific asymmetrical airfoil sections are used to minimize the very pronounced increase in drag associated with airflow near the speed of sound. [12] These airfoils, called supercritical airfoils, are flat on top and curved on the bottom. [13]

Design features

The wing of a landing BMI Airbus A319-100. The slats at its leading edge and the flaps at its trailing edge are extended. Bmi a319-100 g-dbca closeup arp.jpg
The wing of a landing BMI Airbus A319-100. The slats at its leading edge and the flaps at its trailing edge are extended.

Aircraft wings may feature some of the following:

Aircraft wings may have various devices, such as flaps or slats, that the pilot uses to modify the shape and surface area of the wing to change its operating characteristics in flight.

Applications

Besides fixed-wing aircraft, applications for wing shapes include:[ citation needed ]

Flexible wings

In 1948, Francis Rogallo invented the fully limp flexible wing. Domina Jalbert invented flexible un-sparred ram-air airfoiled thick wings.

See also

Natural world:

Aviation:

Sailing:

Related Research Articles

<span class="mw-page-title-main">Lift (force)</span> Force perpendicular to flow of surrounding fluid

When a fluid flows around an object, the fluid exerts a force on the object. Lift is the component of this force that is perpendicular to the oncoming flow direction. It contrasts with the drag force, which is the component of the force parallel to the flow direction. Lift conventionally acts in an upward direction in order to counter the force of gravity, but it is defined to act perpendicular to the flow and therefore can act in any direction.

<span class="mw-page-title-main">Aileron</span> Aircraft control surface used to induce roll

An aileron is a hinged flight control surface usually forming part of the trailing edge of each wing of a fixed-wing aircraft. Ailerons are used in pairs to control the aircraft in roll, which normally results in a change in flight path due to the tilting of the lift vector. Movement around this axis is called 'rolling' or 'banking'.

For fixed-wing aircraft, ground effect is the reduced aerodynamic drag that an aircraft's wings generate when they are close to a fixed surface. During takeoff, ground effect can cause the aircraft to "float" while below the recommended climb speed. The pilot can then fly just above the runway while the aircraft accelerates in ground effect until a safe climb speed is reached.

<span class="mw-page-title-main">Flight</span> Process by which an object moves, through an atmosphere or beyond it

Flight or flying is the process by which an object moves through a space without contacting any planetary surface, either within an atmosphere or through the vacuum of outer space. This can be achieved by generating aerodynamic lift associated with gliding or propulsive thrust, aerostatically using buoyancy, or by ballistic movement.

In fluid dynamics, angle of attack is the angle between a reference line on a body and the vector representing the relative motion between the body and the fluid through which it is moving. Angle of attack is the angle between the body's reference line and the oncoming flow. This article focuses on the most common application, the angle of attack of a wing or airfoil moving through air.

<span class="mw-page-title-main">Airfoil</span> Cross-sectional shape of a wing, blade of a propeller, rotor, or turbine, or sail

An airfoil or aerofoil is a streamlined body that is capable of generating significantly more lift than drag. Wings, sails and propeller blades are examples of airfoils. Foils of similar function designed with water as the working fluid are called hydrofoils.

Lift-induced drag, induced drag, vortex drag, or sometimes drag due to lift, in aerodynamics, is an aerodynamic drag force that occurs whenever a moving object redirects the airflow coming at it. This drag force occurs in airplanes due to wings or a lifting body redirecting air to cause lift and also in cars with airfoil wings that redirect air to cause a downforce. It is symbolized as , and the lift-induced drag coefficient as .

<span class="mw-page-title-main">Flight control surfaces</span> Surface that allows a pilot to adjust and control an aircrafts flight attitude

Aircraft flight control surfaces are aerodynamic devices allowing a pilot to adjust and control the aircraft's flight attitude.

<span class="mw-page-title-main">Blown flap</span> High-lift device on some aircraft wings

Blown flaps, blown wing or jet flaps are powered aerodynamic high-lift devices used on the wings of certain aircraft to improve their low-speed flight characteristics. They use air blown through nozzles to shape the airflow over the rear edge of the wing, directing the flow downward to increase the lift coefficient. There are a variety of methods to achieve this airflow, most of which use jet exhaust or high-pressure air bled off of a jet engine's compressor and then redirected to follow the line of trailing-edge flaps.

<span class="mw-page-title-main">High-lift device</span> Wing surface area adjuster, typically for shortening take-off and landing

In aircraft design and aerospace engineering, a high-lift device is a component or mechanism on an aircraft's wing that increases the amount of lift produced by the wing. The device may be a fixed component, or a movable mechanism which is deployed when required. Common movable high-lift devices include wing flaps and slats. Fixed devices include leading-edge slots, leading edge root extensions, and boundary layer control systems.

<span class="mw-page-title-main">Elevator (aeronautics)</span> Aircraft control surface used to control pitch

Elevators are flight control surfaces, usually at the rear of an aircraft, which control the aircraft's pitch, and therefore the angle of attack and the lift of the wing. The elevators are usually hinged to the tailplane or horizontal stabilizer. They may be the only pitch control surface present, and are sometimes located at the front of the aircraft or integrated into a rear "all-moving tailplane", also called a slab elevator or stabilator.

<span class="mw-page-title-main">Flap (aeronautics)</span> Anti-stalling high-lift device on aircraft

A flap is a high-lift device used to reduce the stalling speed of an aircraft wing at a given weight. Flaps are usually mounted on the wing trailing edges of a fixed-wing aircraft. Flaps are used to reduce the take-off distance and the landing distance. Flaps also cause an increase in drag so they are retracted when not needed.

Aircraft flight mechanics are relevant to fixed wing and rotary wing (helicopters) aircraft. An aeroplane, is defined in ICAO Document 9110 as, "a power-driven heavier than air aircraft, deriving its lift chiefly from aerodynamic reactions on surface which remain fixed under given conditions of flight".

<span class="mw-page-title-main">Leading-edge slot</span> Anti-stall control surface on aircraft

A leading-edge slot is a fixed aerodynamic feature of the wing of some aircraft to reduce the stall speed and promote good low-speed handling qualities. A leading-edge slot is a spanwise gap in each wing, allowing air to flow from below the wing to its upper surface. In this manner they allow flight at higher angles of attack and thus reduce the stall speed.

<span class="mw-page-title-main">Supercritical airfoil</span> Airfoil designed primarily to delay the onset of wave drag in the transonic speed range

A supercritical aerofoil is an airfoil designed primarily to delay the onset of wave drag in the transonic speed range.

A foil is a solid object with a shape such that when placed in a moving fluid at a suitable angle of attack the lift is substantially larger than the drag. If the fluid is a gas, the foil is called an airfoil or aerofoil, and if the fluid is water the foil is called a hydrofoil.

Adverse yaw is the natural and undesirable tendency for an aircraft to yaw in the opposite direction of a roll. It is caused by the difference in lift and drag of each wing. The effect can be greatly minimized with ailerons deliberately designed to create drag when deflected upward and/or mechanisms which automatically apply some amount of coordinated rudder. As the major causes of adverse yaw vary with lift, any fixed-ratio mechanism will fail to fully solve the problem across all flight conditions and thus any manually operated aircraft will require some amount of rudder input from the pilot in order to maintain coordinated flight.

<span class="mw-page-title-main">Leading-edge slat</span> Device increasing the lift of the wing at low speed (take-off and landing)

A slat is an aerodynamic surface on the leading edge of the wing of a fixed-wing aircraft. When retracted, the slat lies flush with the rest of the wing. A slat is deployed by sliding forward, opening a slot between the wing and the slat. Air from below the slat flows through the slot and replaces the boundary layer that has travelled at high speed around the leading edge of the slat, losing a significant amount of its kinetic energy due to skin friction drag. When deployed, slats allow the wings to operate at a higher angle of attack before stalling. With slats deployed an aircraft can fly at slower speeds, allowing it to take off and land in shorter distances. They are used during takeoff and landing and while performing low-speed maneuvers which may take the aircraft close to a stall. Slats are retracted in normal flight to minimize drag.

A supersonic airfoil is a cross-section geometry designed to generate lift efficiently at supersonic speeds. The need for such a design arises when an aircraft is required to operate consistently in the supersonic flight regime.

<span class="mw-page-title-main">History of aerodynamics</span>

Aerodynamics is a branch of dynamics concerned with the study of the motion of air. It is a sub-field of fluid and gas dynamics, and the term "aerodynamics" is often used when referring to fluid dynamics

References

  1. "Online Etymology Dictionary". Etymonline.com. Retrieved 2012-04-25.
  2. The Sports Car - Its design and performance,Colin Campbell, ISBN   978 1 4613 3384 5,p.180
  3. "Swimming". Stanford.edu. Retrieved 2012-04-25.
  4. "Navier-Stokes Equations". Grc.nasa.gov. 2012-04-16. Retrieved 2012-04-25.
  5. "...the effect of the wing is to give the air stream a downward velocity component. The reaction force of the deflected air mass must then act on the wing to give it an equal and opposite upward component." In: Halliday, David; Resnick, Robert, Fundamentals of Physics 3rd Edition, John Wiley & Sons, p. 378
  6. "If the body is shaped, moved, or inclined in such a way as to produce a net deflection or turning of the flow, the local velocity is changed in magnitude, direction, or both. Changing the velocity creates a net force on the body" "Lift from Flow Turning". NASA Glenn Research Center. Retrieved 2011-06-29.
  7. "The cause of the aerodynamic lifting force is the downward acceleration of air by the airfoil..." Weltner, Klaus; Ingelman-Sundberg, Martin, Physics of Flight – reviewed, archived from the original on 2011-07-19
  8. "Equal Transit Theory Interactive | Glenn Research Center | NASA". Glenn Research Center . Archived from the original on 27 September 2024. Retrieved 17 November 2024.
  9. E. V. Laitone, Wind tunnel tests of wings at Reynolds numbers below 70 000, Experiments in Fluids23, 405 (1997). doi : 10.1007/s003480050128
  10. The Design Of The Aeroplane,Darrol Stinton, ISBN   0 632 01877 1,p.586
  11. "...consider a sail that is nothing but a vertical wing (generating side-force to propel a yacht). ...it is obvious that the distance between the stagnation point and the trailing edge is more or less the same on both sides. This becomes exactly true in the absence of a mast—and clearly the presence of the mast is of no consequence in the generation of lift. Thus, the generation of lift does not require different distances around the upper and lower surfaces." Holger Babinsky How do Wings Work? Physics Education November 2003, PDF
  12. John D. Anderson, Jr. Introduction to Flight 4th ed page 271.
  13. 'Supercritical wings have a flat-on-top "upside down" look.' NASA Dryden Flight Research Center http://www.nasa.gov/centers/dryden/about/Organizations/Technology/Facts/TF-2004-13-DFRC.html