Aerial locomotion in marine animals

Last updated
Flying fish taxis after taking off from underwater. Pink-wing flying fish.jpg
Flying fish taxis after taking off from underwater.

Various marine animals are capable of aerial locomotion, i.e., jumping out of the water and moving through air. Some possible reasons for this behavior are hunting, escaping from predators, and saving energy for swimming or breathing. Some of the jumping behaviors initiate gliding and taxiing in air, while some of them end up falling back to water.

Contents

Penetrating water surface

The speed of motion in air is faster than in water because of drag force. The drag force is proportional to density of the fluid. The animal jumping out of water will feel almost no drag, since the air density is 1,000 times less than water density. Usually animals gain thrust for the jumping as how they lift themselves underwater. Some of them are group behavior.

Mechanism

Jet propulsion

Jet propulsion generates thrust and momentum by shooting out water jets. Flying squid is known for their behavior of leaping out of the water. Ommastrephinae and Todarodinae are two subfamilies of squids under the family of Ommastrephidae. They utilize jet propulsion to jump out of water as they do underwater, including Japanese flying squid.., [1] Humboldt squid, [2] Neon flying squid, sevenstar flying squid, and Wellington flying squid. Squid flight may be thought to reduce the cost of migration. [2] The acceleration of Sthenoteuthis pteropus in air is 265 body lengths/s2 (24.5 m/s2), which is found to exceed that in water (79 body lengths/s2).

Tail beating

The fish approach the water surface at high speed (about 10 m/s in large fish; 20-30 body lengths/s) with their lateral fins furled against the body. They get accelerated by beating their tails rapidly, and break through the water surface at a shallow angle to the horizontal. Four fish in ray-finned fish family (Beloniformes) and salmon have this jumping behavior. The ray-finned fish includes needlefish, [3] flyingfish, [4] halfbeak, [3] and sauries. Salmon jump out waterfalls during upstream spawning migrations. [3]

Halfbeak usually swims just near the water surface. Dermogenys sumatrana 02.jpg
Halfbeak usually swims just near the water surface.
Oncorhynchus tschawytscha chinook salmon fish in river Chinook salmon moving upstream.jpg
Oncorhynchus tschawytscha chinook salmon fish in river

C-start

C-start is escape reflex employed by fish. The fish move upward by curving their slender body as a letter C. [5] Most of the fish jump out of water by C-start. Freshwater butterflyfish jumps out of water by curving its body. [6] The fish is known for its enlarged pectoral fins but it falls back to water instead of gliding. [6] Freshwater hatchetfish exhibits a ballistic aerial path. [6]

Porpoising

Porpoising is high-speed swimming close to water surface with many leaving and re-entering the water nose-first. Dolphin, Penguin, and Seal porpoise in the wild. Dolphin saves energy at high speed porpoising. [7] [8] Penguin porpoises in group for long-distance traveling. [9] Seal porpoises as group play [10]

Other

The mechanisms and jumping patterns of some aquatic animals are not clear. Mobula penetrates sea surface by many photo evidences. [11] Great white shark attacks seals near water surface at Seal Island in South Africa [12]

Mobula jumps out of water. Mobula breach 2.jpg
Mobula jumps out of water.

See also

Related Research Articles

<span class="mw-page-title-main">Cetacea</span> Infraorder of mammals

Cetacea is an infraorder of aquatic mammals that includes whales, dolphins, and porpoises. Key characteristics are their fully aquatic lifestyle, streamlined body shape, often large size and exclusively carnivorous diet. They propel themselves through the water with powerful up-and-down movement of their tail which ends in a paddle-like fluke, using their flipper-shaped forelimbs to maneuver.

<span class="mw-page-title-main">Dolphin</span> Marine mammals, closely related to whales and porpoises

A dolphin is an aquatic mammal within the infraorder Cetacea. Dolphin species belong to the families Delphinidae, Platanistidae, Iniidae, Pontoporiidae, and the extinct Lipotidae. There are 40 extant species named as dolphins.

<span class="mw-page-title-main">Fin</span> Thin component or appendage attached to a larger body or structure

A fin is a thin component or appendage attached to a larger body or structure. Fins typically function as foils that produce lift or thrust, or provide the ability to steer or stabilize motion while traveling in water, air, or other fluids. Fins are also used to increase surface areas for heat transfer purposes, or simply as ornamentation.

<span class="mw-page-title-main">Porpoise</span> Small cetacean of the family Phocoenidae

Porpoises are a group of fully aquatic marine mammals, similar in appearance to a dolphin, all of which are classified under the family Phocoenidae, parvorder Odontoceti. They are, however, more closely related to narwhals and belugas than to the true dolphins. There are eight extant species of porpoise, all among the smallest of the toothed whales. Porpoises are distinguished from dolphins by their flattened, spade-shaped teeth distinct from the conical teeth of dolphins, and lack of a pronounced beak, although some dolphins also lack a pronounced beak. Porpoises, and other cetaceans, belong to the clade Cetartiodactyla with even-toed ungulates.

<span class="mw-page-title-main">Oceanic dolphin</span> Family of marine mammals

Oceanic dolphins or Delphinidae are a widely distributed family of dolphins that live in the sea. Close to forty extant species are recognised. They include several big species whose common names contain "whale" rather than "dolphin", such as the Globicephalinae. Delphinidae is a family within the superfamily Delphinoidea, which also includes the porpoises (Phocoenidae) and the Monodontidae. River dolphins are relatives of the Delphinoidea.

<span class="mw-page-title-main">Toothed whale</span> Parvorder of cetaceans

The toothed whales are a parvorder of cetaceans that includes dolphins, porpoises, and all other whales possessing teeth, such as the beaked whales and sperm whales. Seventy-three species of toothed whales are described. They are one of two living groups of cetaceans, the other being the baleen whales (Mysticeti), which have baleen instead of teeth. The two groups are thought to have diverged around 34 million years ago (mya).

<span class="mw-page-title-main">Spinner dolphin</span> Species of mammal

The spinner dolphin is a small dolphin found in off-shore tropical waters around the world. It is famous for its acrobatic displays in which it rotates around its longitudinal axis as it leaps through the air. It is a member of the family Delphinidae of toothed whales.

<span class="mw-page-title-main">Flying fish</span> Family of marine fish that can make powerful, self-propelled leaps out of water

The Exocoetidae are a family of marine fish in the order Beloniformes class Actinopterygii, known colloquially as flying fish or flying cod. About 64 species are grouped in seven to nine genera. While they cannot fly in the same way a bird does, flying fish can make powerful, self-propelled leaps out of the water where their long wing-like fins enable gliding for considerable distances above the water's surface. The main reason for this behavior is thought to be to escape from underwater predators, which include swordfish, mackerel, tuna, and marlin, among others, though their periods of flight expose them to attack by avian predators such as frigate birds.

<span class="mw-page-title-main">Cetacean surfacing behaviour</span>

Cetacean surfacing behaviour or breaching is a group of behaviours demonstrated by the Cetacea infraorder when they come to the water's surface to breathe. Time intervals between surfacing can vary depending on the species, surfacing style or the purpose of the dive; some species have been known to dive for up to 85 minutes at a time when hunting, and dives in excess of three hours have been observed in Cuvier's beaked whale under extreme circumstances.

<span class="mw-page-title-main">Flipper (anatomy)</span> Flattened limb adapted for propulsion and maneuvering in water

A flipper is a broad, flattened limb adapted for aquatic locomotion. It refers to the fully webbed, swimming appendages of aquatic vertebrates that are not fish.

<span class="mw-page-title-main">Animal locomotion</span> Self-propulsion by an animal

Animal locomotion, in ethology, is any of a variety of methods that animals use to move from one place to another. Some modes of locomotion are (initially) self-propelled, e.g., running, swimming, jumping, flying, hopping, soaring and gliding. There are also many animal species that depend on their environment for transportation, a type of mobility called passive locomotion, e.g., sailing, kiting (spiders), rolling or riding other animals (phoresis).

<span class="mw-page-title-main">Fish locomotion</span> Ways that fish move around

Fish locomotion is the various types of animal locomotion used by fish, principally by swimming. This is achieved in different groups of fish by a variety of mechanisms of propulsion, most often by wave-like lateral flexions of the fish's body and tail in water, and in various specialised fish by motions of the fins. The major forms of locomotion in fish are:

<span class="mw-page-title-main">Flying and gliding animals</span> Animals that have evolved aerial locomotion

A number of animals are capable of aerial locomotion, either by powered flight or by gliding. This trait has appeared by evolution many times, without any single common ancestor. Flight has evolved at least five times in separate animals: insects, pterosaurs, birds, bats and humans. Gliding has evolved on many more occasions. Usually the development is to aid canopy animals in getting from tree to tree, although there are other possibilities. Gliding, in particular, has evolved among rainforest animals, especially in the rainforests in Asia where the trees are tall and widely spaced. Several species of aquatic animals, and a few amphibians and reptiles have also evolved this gliding flight ability, typically as a means of evading predators.

<span class="mw-page-title-main">Stellwagen Bank National Marine Sanctuary</span> Marine protected area of Massachusetts, USA

Stellwagen Bank National Marine Sanctuary is an 842-square-mile (638-square-nautical-mile) federally protected marine sanctuary located at the mouth of Massachusetts Bay, between Cape Cod and Cape Ann. It is known as an excellent whale watching site, and is home to many other species of marine life.

Gliding flight is heavier-than-air flight without the use of thrust; the term volplaning also refers to this mode of flight in animals. It is employed by gliding animals and by aircraft such as gliders. This mode of flight involves flying a significant distance horizontally compared to its descent and therefore can be distinguished from a mostly straight downward descent like with a round parachute.

<span class="mw-page-title-main">Aquatic locomotion</span>

Aquatic locomotion or swimming is biologically propelled motion through a liquid medium. The simplest propulsive systems are composed of cilia and flagella. Swimming has evolved a number of times in a range of organisms including arthropods, fish, molluscs, reptiles, birds, and mammals.

<span class="mw-page-title-main">Tradeoffs for locomotion in air and water</span> Comparison of swimming and flying, evolution and biophysics

Certain species of fish and birds are able to locomote in both air and water, two fluid media with very different properties. A fluid is a particular phase of matter that deforms under shear stresses and includes any type of liquid or gas. Because fluids are easily deformable and move in response to applied forces, efficiently locomoting in a fluid medium presents unique challenges. Specific morphological characteristics are therefore required in animal species that primarily depend on fluidic locomotion. Because the properties of air and water are so different, swimming and flying have very disparate morphological requirements. As a result, despite the large diversity of animals that are capable of flight or swimming, only a limited number of these species have mastered the ability to both fly and swim. These species demonstrate distinct morphological and behavioral tradeoffs associated with transitioning from air to water and water to air.

<span class="mw-page-title-main">Bait ball</span>

A bait ball, or baitball, occurs when small fish swarm in a tightly packed spherical formation about a common centre. It is a last-ditch defensive measure adopted by small schooling fish when they are threatened by predators. Small schooling fish are eaten by many types of predators, and for this reason they are called bait fish or forage fish.

Hydrodynamic reception

Hydrodynamic reception refers to the ability of some animals to sense water movements generated by biotic or abiotic sources. This form of mechanoreception is useful for orientation, hunting, predator avoidance, and schooling. Frequent encounters with conditions of low visibility can prevent vision from being a reliable information source for navigation and sensing objects or organisms in the environment. Sensing water movements is one resolution to this problem.

<span class="mw-page-title-main">Fish fin</span> Bony skin-covered spines or rays protruding from the body of a fish

Fins are distinctive anatomical features composed of bony spines or rays protruding from the body of a fish. They are covered with skin and joined together either in a webbed fashion, as seen in most bony fish, or similar to a flipper, as seen in sharks. Apart from the tail or caudal fin, fish fins have no direct connection with the spine and are supported only by muscles. Their principal function is to help the fish swim.

References

  1. Muramatsu, K., J. Yamamoto, T. Abe, K. Sekiguchi, N. Hoshi, and Y. Sakurai. 2013. "Oceanic Squid Do Fly." Marine Biology 160 (5): 1171–75. doi:10.1007/s00227-013-2169-9
  2. 1 2 O’Dor, Ron, Julia Stewart, William Gilly, John Payne, Teresa Cerveira Borges, and Tierney Thys. 2013. "Squid Rocket Science: How Squid Launch into Air." Deep-Sea Research Part II: Topical Studies in Oceanography 95: 113–18. doi:10.1016/j.dsr2.2012.07.002
  3. 1 2 3 Lauritzen, D. V., F. Hertel, and M. S. Gordon. 2005. "A Kinematic Examination of Wild Sockeye Salmon Jumping up Natural Waterfalls." Journal of Fish Biology 67 (4): 1010–20. doi:10.1111/j.0022-1112.2005.00799.x
  4. Davenport, John. 1994. "How and Why Do Flying Fish Fly?" Reviews in Fish Biology and Fisheries 4 (2): 184–214. doi:10.1007/BF00044128
  5. Weihs, D. 1972. "A Hydrodynamical Analysis of Fish Turning Manoeuvres" Proceedings of the Royal Society of London. Series B, Biological Sciences 182 (1066): 59-72 JSTOR   76303
  6. 1 2 3 Saidel, William M., Gabriel F. Strain, and Shannon K. Fornari. 2004. "Characterization of the Aerial Escape Response of the African Butterfly Fish, Pantodon Buchholzi Peters." Environmental Biology of Fishes 71 (1): 63–72. doi:10.1023/B:EBFI.0000043153.38418.cd
  7. Au, D., and D. Weihs. 1980. "At High Speeds Dolphins Save Energy by Leaping." Nature 284 (5756): 548–50. doi:10.1038/284548a0
  8. Weihs, D. 2002. "Dynamics of Dolphin Porpoising Revisited" Integrative and Comparative Biology 42 (5): 1071-1078 JSTOR   3884627
  9. Yoda, K., K. Sato, Y. Niizuma, M. Kurita, C. Bost, Y. Le Maho, and Y. Naito. 1999. "Precise Monitoring of Porpoising Behaviour of Adelie Penguins Determined Using Acceleration Data Loggers." Journal of Experimental Biology 202 (22): 3121–26.
  10. Wilson, Susan. 1974. "Juvenile Play of the Common Seal Phoca vitulina vitulina with Comparative Notes on the Grey Seal Halichoerus grypus" Behaviour 48 (1/2): 37-60 JSTOR   4533561
  11. Albert, Paul. 2007. "The flying mobulas of the Sea of Cortez" Archived 2013-05-04 at the Wayback Machine Underwater Naturalist
  12. Martin, R. Aidan, Neil Hammerschlag, Ralph S. Collier, and Chris Fallows. 2005. "Predatory Behaviour of White Sharks (Carcharodon Carcharias) at Seal Island, South Africa." Journal of the Marine Biological Association of the United Kingdom 85 (05): 1121–35. doi:10.1017/S002531540501218X