Capillary wave

Last updated
Capillary waves (ripples) in water 2006-01-14 Surface waves.jpg
Capillary waves (ripples) in water
Ripples on Lifjord in Oksnes Municipality, Norway Ripples Lifjord.jpg
Ripples on Lifjord in Øksnes Municipality, Norway
Capillary waves produced by droplet impacts on the interface between water and air. Multy droplets impact.JPG
Capillary waves produced by droplet impacts on the interface between water and air.

A capillary wave is a wave traveling along the phase boundary of a fluid, whose dynamics and phase velocity are dominated by the effects of surface tension.

Contents

Capillary waves are common in nature, and are often referred to as ripples. The wavelength of capillary waves on water is typically less than a few centimeters, with a phase speed in excess of 0.2–0.3 meter/second.

A longer wavelength on a fluid interface will result in gravity–capillary waves which are influenced by both the effects of surface tension and gravity, as well as by fluid inertia. Ordinary gravity waves have a still longer wavelength.

When generated by light wind in open water, a nautical name for them is cat's paw waves. Light breezes which stir up such small ripples are also sometimes referred to as cat's paws. On the open ocean, much larger ocean surface waves (seas and swells) may result from coalescence of smaller wind-caused ripple-waves.

Dispersion relation

The dispersion relation describes the relationship between wavelength and frequency in waves. Distinction can be made between pure capillary waves – fully dominated by the effects of surface tension – and gravity–capillary waves which are also affected by gravity.

Capillary waves, proper

The dispersion relation for capillary waves is

where is the angular frequency, the surface tension, the density of the heavier fluid, the density of the lighter fluid and the wavenumber. The wavelength is For the boundary between fluid and vacuum (free surface), the dispersion relation reduces to

Gravity–capillary waves

Dispersion of gravity-capillary waves on the surface of deep water (zero mass density of upper layer,
r
'
=
0
{\displaystyle \rho '=0}
). Phase and group velocity divided by
g
s
/
r
4
{\displaystyle \scriptstyle {\sqrt[{4}]{g\sigma /\rho }}}
as a function of inverse relative wavelength
1
l
s
/
(
r
g
)
{\displaystyle \scriptstyle {\frac {1}{\lambda }}{\sqrt {\sigma /(\rho g)}}}
.
* Blue lines (A): phase velocity, Red lines (B): group velocity.
* Drawn lines: dispersion relation for gravity-capillary waves.
* Dashed lines: dispersion relation for deep-water gravity waves.
* Dash-dotted lines: dispersion relation valid for deep-water capillary waves. Dispersion capillary.svg
Dispersion of gravity–capillary waves on the surface of deep water (zero mass density of upper layer, ). Phase and group velocity divided by as a function of inverse relative wavelength .
  Blue lines (A): phase velocity, Red lines (B): group velocity.
  Drawn lines: dispersion relation for gravity–capillary waves.
  Dashed lines: dispersion relation for deep-water gravity waves.
  Dash-dotted lines: dispersion relation valid for deep-water capillary waves.

When capillary waves are also affected substantially by gravity, they are called gravity–capillary waves. Their dispersion relation reads, for waves on the interface between two fluids of infinite depth: [1] [2]

where is the acceleration due to gravity, and are the densities of the two fluids . The factor in the first term is the Atwood number.

Gravity wave regime

For large wavelengths (small ), only the first term is relevant and one has gravity waves. In this limit, the waves have a group velocity half the phase velocity: following a single wave's crest in a group one can see the wave appearing at the back of the group, growing and finally disappearing at the front of the group.

Capillary wave regime

Shorter (large ) waves (e.g. 2 mm for the water–air interface), which are proper capillary waves, do the opposite: an individual wave appears at the front of the group, grows when moving towards the group center and finally disappears at the back of the group. Phase velocity is two thirds of group velocity in this limit.

Phase velocity minimum

Between these two limits is a point at which the dispersion caused by gravity cancels out the dispersion due to the capillary effect. At a certain wavelength, the group velocity equals the phase velocity, and there is no dispersion. At precisely this same wavelength, the phase velocity of gravity–capillary waves as a function of wavelength (or wave number) has a minimum. Waves with wavelengths much smaller than this critical wavelength are dominated by surface tension, and much above by gravity. The value of this wavelength and the associated minimum phase speed are: [1]

For the airwater interface, is found to be 1.7 cm (0.67 in), and is 0.23 m/s (0.75 ft/s). [1]

If one drops a small stone or droplet into liquid, the waves then propagate outside an expanding circle of fluid at rest; this circle is a caustic which corresponds to the minimal group velocity. [3]

Derivation

As Richard Feynman put it, "[water waves] that are easily seen by everyone and which are usually used as an example of waves in elementary courses [...] are the worst possible example [...]; they have all the complications that waves can have." [4] The derivation of the general dispersion relation is therefore quite involved. [5]

There are three contributions to the energy, due to gravity, to surface tension, and to hydrodynamics. The first two are potential energies, and responsible for the two terms inside the parenthesis, as is clear from the appearance of and . For gravity, an assumption is made of the density of the fluids being constant (i.e., incompressibility), and likewise (waves are not high enough for gravitation to change appreciably). For surface tension, the deviations from planarity (as measured by derivatives of the surface) are supposed to be small. For common waves both approximations are good enough.

The third contribution involves the kinetic energies of the fluids. It is the most complicated and calls for a hydrodynamic framework. Incompressibility is again involved (which is satisfied if the speed of the waves is much less than the speed of sound in the media), together with the flow being irrotational – the flow is then potential. These are typically also good approximations for common situations.

The resulting equation for the potential (which is Laplace equation) can be solved with the proper boundary conditions. On one hand, the velocity must vanish well below the surface (in the "deep water" case, which is the one we consider, otherwise a more involved result is obtained, see Ocean surface waves.) On the other, its vertical component must match the motion of the surface. This contribution ends up being responsible for the extra outside the parenthesis, which causes all regimes to be dispersive, both at low values of , and high ones (except around the one value at which the two dispersions cancel out.)

See also

Notes

  1. 1 2 3 Lamb (1994), §267, page 458–460.
  2. Dingemans (1997), Section 2.1.1, p. 45.
    Phillips (1977), Section 3.2, p. 37.
  3. Falkovich, G. (2011). Fluid Mechanics, a short course for physicists. Cambridge University Press. Section 3.1 and Exercise 3.3. ISBN   978-1-107-00575-4.
  4. R.P. Feynman, R.B. Leighton, and M. Sands (1963). The Feynman Lectures on Physics. Addison-Wesley. Volume I, Chapter 51-4.
  5. See e.g. Safran (1994) for a more detailed description.
  6. Lamb (1994), §174 and §230.
  7. 1 2 3 4 5 Lamb (1994), §266.
  8. 1 2 Lamb (1994), §61.
  9. Lamb (1994), §20
  10. Lamb (1994), §230.
  11. 1 2 Whitham, G. B. (1974). Linear and nonlinear waves. Wiley-Interscience. ISBN   0-471-94090-9. See section 11.7.
  12. Lord Rayleigh (J. W. Strutt) (1877). "On progressive waves". Proceedings of the London Mathematical Society. 9: 21–26. doi:10.1112/plms/s1-9.1.21. Reprinted as Appendix in: Theory of Sound1, MacMillan, 2nd revised edition, 1894.

Related Research Articles

<span class="mw-page-title-main">Wave</span> Repeated oscillation around equilibrium

In physics, mathematics, engineering, and related fields, a wave is a propagating dynamic disturbance of one or more quantities. Periodic waves oscillate repeatedly about an equilibrium (resting) value at some frequency. When the entire waveform moves in one direction, it is said to be a travelling wave; by contrast, a pair of superimposed periodic waves traveling in opposite directions makes a standing wave. In a standing wave, the amplitude of vibration has nulls at some positions where the wave amplitude appears smaller or even zero.

<span class="mw-page-title-main">Gravity wave</span> Wave where gravity is the main restoring force

In fluid dynamics, gravity waves are waves in a fluid medium or at the interface between two media when the force of gravity or buoyancy tries to restore equilibrium. An example of such an interface is that between the atmosphere and the ocean, which gives rise to wind waves.

The primitive equations are a set of nonlinear partial differential equations that are used to approximate global atmospheric flow and are used in most atmospheric models. They consist of three main sets of balance equations:

  1. A continuity equation: Representing the conservation of mass.
  2. Conservation of momentum: Consisting of a form of the Navier–Stokes equations that describe hydrodynamical flow on the surface of a sphere under the assumption that vertical motion is much smaller than horizontal motion (hydrostasis) and that the fluid layer depth is small compared to the radius of the sphere
  3. A thermal energy equation: Relating the overall temperature of the system to heat sources and sinks
<span class="mw-page-title-main">Wind wave</span> Surface waves generated by wind on open water

In fluid dynamics, a wind wave, or wind-generated water wave, is a surface wave that occurs on the free surface of bodies of water as a result of the wind blowing over the water's surface. The contact distance in the direction of the wind is known as the fetch. Waves in the oceans can travel thousands of kilometers before reaching land. Wind waves on Earth range in size from small ripples to waves over 30 m (100 ft) high, being limited by wind speed, duration, fetch, and water depth.

<span class="mw-page-title-main">Dispersion relation</span> Relation of wavelength/wavenumber as a function of a waves frequency

In the physical sciences and electrical engineering, dispersion relations describe the effect of dispersion on the properties of waves in a medium. A dispersion relation relates the wavelength or wavenumber of a wave to its frequency. Given the dispersion relation, one can calculate the frequency-dependent phase velocity and group velocity of each sinusoidal component of a wave in the medium, as a function of frequency. In addition to the geometry-dependent and material-dependent dispersion relations, the overarching Kramers–Kronig relations describe the frequency-dependence of wave propagation and attenuation.

<span class="mw-page-title-main">Internal wave</span> Type of gravity waves that oscillate within a fluid medium

Internal waves are gravity waves that oscillate within a fluid medium, rather than on its surface. To exist, the fluid must be stratified: the density must change with depth/height due to changes, for example, in temperature and/or salinity. If the density changes over a small vertical distance, the waves propagate horizontally like surface waves, but do so at slower speeds as determined by the density difference of the fluid below and above the interface. If the density changes continuously, the waves can propagate vertically as well as horizontally through the fluid.

<span class="mw-page-title-main">Denny's paradox</span> Question of animal locomotion on water

In biology, Denny's paradox refers to the apparent impossibility of surface-dwelling animals such as the water strider generating enough propulsive force to move. It is named after biologist Mark Denny, and relates to animal locomotion on the surface layer of water.

In fluid dynamics, dispersion of water waves generally refers to frequency dispersion, which means that waves of different wavelengths travel at different phase speeds. Water waves, in this context, are waves propagating on the water surface, with gravity and surface tension as the restoring forces. As a result, water with a free surface is generally considered to be a dispersive medium.

<span class="mw-page-title-main">Rayleigh–Taylor instability</span> Unstable behavior of two contacting fluids of different densities

The Rayleigh–Taylor instability, or RT instability, is an instability of an interface between two fluids of different densities which occurs when the lighter fluid is pushing the heavier fluid. Examples include the behavior of water suspended above oil in the gravity of Earth, mushroom clouds like those from volcanic eruptions and atmospheric nuclear explosions, supernova explosions in which expanding core gas is accelerated into denser shell gas, instabilities in plasma fusion reactors and inertial confinement fusion.

<span class="mw-page-title-main">Shallow water equations</span> Set of partial differential equations that describe the flow below a pressure surface in a fluid

The shallow-water equations (SWE) are a set of hyperbolic partial differential equations that describe the flow below a pressure surface in a fluid. The shallow-water equations in unidirectional form are also called (de) Saint-Venant equations, after Adhémar Jean Claude Barré de Saint-Venant.

In fluid dynamics, the Morton number (Mo) is a dimensionless number used together with the Eötvös number or Bond number to characterize the shape of bubbles or drops moving in a surrounding fluid or continuous phase, c. It is named after Rose Morton, who described it with W. L. Haberman in 1953.

<span class="mw-page-title-main">Capillary length</span>

The capillary length or capillary constant is a length scaling factor that relates gravity and surface tension. It is a fundamental physical property that governs the behavior of menisci, and is found when body forces (gravity) and surface forces are in equilibrium.

Sedimentation potential occurs when dispersed particles move under the influence of either gravity or centrifugation or electricity in a medium. This motion disrupts the equilibrium symmetry of the particle's double layer. While the particle moves, the ions in the electric double layer lag behind due to the liquid flow. This causes a slight displacement between the surface charge and the electric charge of the diffuse layer. As a result, the moving particle creates a dipole moment. The sum of all of the dipoles generates an electric field which is called sedimentation potential. It can be measured with an open electrical circuit, which is also called sedimentation current.

In fluid mechanics and mathematics, a capillary surface is a surface that represents the interface between two different fluids. As a consequence of being a surface, a capillary surface has no thickness in slight contrast with most real fluid interfaces.

<span class="mw-page-title-main">Stokes wave</span> Nonlinear and periodic surface wave on an inviscid fluid layer of constant mean depth

In fluid dynamics, a Stokes wave is a nonlinear and periodic surface wave on an inviscid fluid layer of constant mean depth. This type of modelling has its origins in the mid 19th century when Sir George Stokes – using a perturbation series approach, now known as the Stokes expansion – obtained approximate solutions for nonlinear wave motion.

In fluid dynamics, Airy wave theory gives a linearised description of the propagation of gravity waves on the surface of a homogeneous fluid layer. The theory assumes that the fluid layer has a uniform mean depth, and that the fluid flow is inviscid, incompressible and irrotational. This theory was first published, in correct form, by George Biddell Airy in the 19th century.

<span class="mw-page-title-main">Cnoidal wave</span> Nonlinear and exact periodic wave solution of the Korteweg–de Vries equation

In fluid dynamics, a cnoidal wave is a nonlinear and exact periodic wave solution of the Korteweg–de Vries equation. These solutions are in terms of the Jacobi elliptic function cn, which is why they are coined cnoidal waves. They are used to describe surface gravity waves of fairly long wavelength, as compared to the water depth.

<span class="mw-page-title-main">Radiation stress</span> Term in physical oceanography

In fluid dynamics, the radiation stress is the depth-integrated – and thereafter phase-averaged – excess momentum flux caused by the presence of the surface gravity waves, which is exerted on the mean flow. The radiation stresses behave as a second-order tensor.

<span class="mw-page-title-main">Visco-elastic jets</span>

Visco-elastic jets are the jets of viscoelastic fluids, i.e. fluids that disobey Newton's law of Viscocity. A Viscoelastic fluid that returns to its original shape after the applied stress is released.

Morris Muskat et al. developed the governing equations for multiphase flow in porous media as a generalisation of Darcy's equation for water flow in porous media. The porous media are usually sedimentary rocks such as clastic rocks or carbonate rocks.

References