Caustic (optics)

Last updated
Caustics produced by a glass of water, visible as patches of light Kaustik.jpg
Caustics produced by a glass of water, visible as patches of light
Cardioid caustic at the bottom of a teacup Caustic00.jpg
Cardioid caustic at the bottom of a teacup
Caustics made by the surface of water Great Barracuda, corals, sea urchin and Caustic (optics) in Kona, Hawaii 2009.jpg
Caustics made by the surface of water
Caustics in shallow water

In optics, a caustic or caustic network [1] is the envelope of light rays which have been reflected or refracted by a curved surface or object, or the projection of that envelope of rays on another surface. [2] The caustic is a curve or surface to which each of the light rays is tangent, defining a boundary of an envelope of rays as a curve of concentrated light. [2] In some cases caustics can be seen as patches of light or their bright edges, shapes which often have cusp singularities.

Contents

Explanation

The rays refracted by a non-flat surface form caustics where many of them cross. Caustics.gif
The rays refracted by a non-flat surface form caustics where many of them cross.

Concentration of light, especially sunlight, can burn. The word caustic, in fact, comes from the Greek καυστός, burnt, via the Latin causticus, burning.

A common situation where caustics are visible is when light shines on a drinking glass. The glass casts a shadow, but also produces a curved region of bright light. In ideal circumstances (including perfectly parallel rays, as if from a point source at infinity), a nephroid-shaped patch of light can be produced. [3] [4] Rippling caustics are commonly formed when light shines through waves on a body of water.

Another familiar caustic is the rainbow. [5] [6] Scattering of light by raindrops causes different wavelengths of light to be refracted into arcs of differing radius, producing the bow.

Computer graphics

Photograph of a typical wine glass caustic Wine glass caustic example.jpg
Photograph of a typical wine glass caustic
Computer rendering of a wine glass caustic Computer rendering of a wine glass caustic.png
Computer rendering of a wine glass caustic

In computer graphics, most modern rendering systems support caustics. Some of them even support volumetric caustics. This is accomplished by raytracing the possible paths of a light beam, accounting for the refraction and reflection. Photon mapping is one implementation of this. Volumetric caustics can also be achieved by volumetric path tracing. Some computer graphic systems work by "forward ray tracing" wherein photons are modeled as coming from a light source and bouncing around the environment according to rules. Caustics are formed in the regions where sufficient photons strike a surface causing it to be brighter than the average area in the scene. “Backward ray tracing” works in the reverse manner beginning at the surface and determining if there is a direct path to the light source. [7] Some examples of 3D ray-traced caustics can be found here.

The focus of most computer graphics systems is aesthetics rather than physical accuracy. This is especially true when it comes to real-time graphics in computer games [8] where generic pre-calculated textures are mostly used instead of physically correct calculations.

Caustic engineering

Caustic engineering describes the process of solving the inverse problem to computer graphics. That is, given a specific image, to determine a surface whose refracted or reflected light forms this image.

In the discrete version of this problem, the surface is divided into several micro-surfaces which are assumed smooth, i.e. the light reflected/refracted by each micro-surface forms a Gaussian caustic. Gaussian caustic means that each micro-surface obey Gaussian distribution. The position and orientation of each of the micro-surfaces are then obtained using a combination of Poisson integration and simulated annealing. [9]

There have been many different approaches to address the continuous problem. One approach uses an idea from transportation theory called optimal transport [10] to find a mapping between incoming light rays and the target surface. After obtaining such a mapping, the surface is optimized by adapting it iteratively using Snell's law of refraction. [11] [12]

Optimal-transport-based caustic pattern design

Basic principle

Controlling caustic pattern is rather a challenging problem as very minor changes of the surface will significantly affect the quality of the pattern since light ray directions might be interfered by other light rays as they intersect with and refract through the material. This will lead to a scattered, discontinuous pattern. To tackle this problem, optimal-transport-based is one of the existing proposed methods to control caustic pattern by redirecting light's directions as it propagates through the surface of a certain transparent material. This is done by solving an inverse optimization problem based on optimal transport. [13] [14] Given a reference image of an object/pattern, the target is to formulate the mathematical description of the material surface through which light refracts and converges to the similar pattern of the reference image. This is done by rearranging/recomputing the initial light intensity until the minimum of the optimization problem is reached.

Manufacturing

Design and manufacturing process Diffren.png
Design and manufacturing process

Once the caustic pattern has been designed computationally, the processed data will be then sent to the manufacturing stage to get the final product. The most common approach is subtractive manufacturing (machining).

Various materials can be used depending on the desired quality, the effort it takes to manufacture, and the available manufacturing method.

Architecture Screenshot from 2020-01-29 13-57-56.png
Architecture

Caustic pattern design has many real-world applications, for example in:

See also

Related Research Articles

<span class="mw-page-title-main">Rendering (computer graphics)</span> Process of generating an image from a model

Rendering is the process of generating a photorealistic or non-photorealistic image from input data such as 3D models. The word "rendering" originally meant the task performed by an artist when depicting a real or imaginary thing. Today, to "render" commonly means to generate an image or video from a precise description using a computer program.

<span class="mw-page-title-main">Global illumination</span> Group of rendering algorithms used in 3D computer graphics

Global illumination (GI), or indirect illumination, is a group of algorithms used in 3D computer graphics that are meant to add more realistic lighting to 3D scenes. Such algorithms take into account not only the light that comes directly from a light source, but also subsequent cases in which light rays from the same source are reflected by other surfaces in the scene, whether reflective or not.

<span class="mw-page-title-main">Optics</span> Branch of physics that studies light

Optics is the branch of physics that studies the behaviour and properties of light, including its interactions with matter and the construction of instruments that use or detect it. Optics usually describes the behaviour of visible, ultraviolet, and infrared light. Light is a type of electromagnetic radiation, and other forms of electromagnetic radiation such as X-rays, microwaves, and radio waves exhibit similar properties.

<span class="mw-page-title-main">Ray tracing (graphics)</span> Rendering method

In 3D computer graphics, ray tracing is a technique for modeling light transport for use in a wide variety of rendering algorithms for generating digital images.

In computer graphics, photon mapping is a two-pass global illumination rendering algorithm developed by Henrik Wann Jensen between 1995 and 2001 that approximately solves the rendering equation for integrating light radiance at a given point in space. Rays from the light source and rays from the camera are traced independently until some termination criterion is met, then they are connected in a second step to produce a radiance value. The algorithm is used to realistically simulate the interaction of light with different types of objects. Specifically, it is capable of simulating the refraction of light through a transparent substance such as glass or water, diffuse interreflection between illuminated objects, the subsurface scattering of light in translucent materials, and some of the effects caused by particulate matter such as smoke or water vapor. Photon mapping can also be extended to more accurate simulations of light, such as spectral rendering. Progressive photon mapping (PPM) starts with ray tracing and then adds more and more photon mapping passes to provide a progressively more accurate render.

Optics is the branch of physics which involves the behavior and properties of light, including its interactions with matter and the construction of instruments that use or detect it. Optics usually describes the behavior of visible, ultraviolet, and infrared light. Because light is an electromagnetic wave, other forms of electromagnetic radiation such as X-rays, microwaves, and radio waves exhibit similar properties.

Caustic most commonly refers to:

<span class="mw-page-title-main">Ray casting</span> Methodological basis for 3D CAD/CAM solid modeling and image rendering

Ray casting is the methodological basis for 3D CAD/CAM solid modeling and image rendering. It is essentially the same as ray tracing for computer graphics where virtual light rays are "cast" or "traced" on their path from the focal point of a camera through each pixel in the camera sensor to determine what is visible along the ray in the 3D scene. The term "Ray Casting" was introduced by Scott Roth while at the General Motors Research Labs from 1978–1980. His paper, "Ray Casting for Modeling Solids", describes modeled solid objects by combining primitive solids, such as blocks and cylinders, using the set operators union (+), intersection (&), and difference (-). The general idea of using these binary operators for solid modeling is largely due to Voelcker and Requicha's geometric modelling group at the University of Rochester. See solid modeling for a broad overview of solid modeling methods. This figure on the right shows a U-Joint modeled from cylinders and blocks in a binary tree using Roth's ray casting system in 1979.

<span class="mw-page-title-main">Gradient-index optics</span>

Gradient-index (GRIN) optics is the branch of optics covering optical effects produced by a gradient of the refractive index of a material. Such gradual variation can be used to produce lenses with flat surfaces, or lenses that do not have the aberrations typical of traditional spherical lenses. Gradient-index lenses may have a refraction gradient that is spherical, axial, or radial.

Beam tracing is an algorithm to simulate wave propagation. It was developed in the context of computer graphics to render 3D scenes, but it has been also used in other similar areas such as acoustics and electromagnetism simulations.

<span class="mw-page-title-main">Path tracing</span> Computer graphics method

Path tracing is a computer graphics Monte Carlo method of rendering images of three-dimensional scenes such that the global illumination is faithful to reality. Fundamentally, the algorithm is integrating over all the illuminance arriving to a single point on the surface of an object. This illuminance is then reduced by a surface reflectance function (BRDF) to determine how much of it will go towards the viewpoint camera. This integration procedure is repeated for every pixel in the output image. When combined with physically accurate models of surfaces, accurate models of real light sources, and optically correct cameras, path tracing can produce still images that are indistinguishable from photographs.

Nonimaging optics is a branch of optics that is concerned with the optimal transfer of light radiation between a source and a target. Unlike traditional imaging optics, the techniques involved do not attempt to form an image of the source; instead an optimized optical system for optimal radiative transfer from a source to a target is desired.

<span class="mw-page-title-main">Ray (optics)</span> Idealized model of light

In optics, a ray is an idealized geometrical model of light or other electromagnetic radiation, obtained by choosing a curve that is perpendicular to the wavefronts of the actual light, and that points in the direction of energy flow. Rays are used to model the propagation of light through an optical system, by dividing the real light field up into discrete rays that can be computationally propagated through the system by the techniques of ray tracing. This allows even very complex optical systems to be analyzed mathematically or simulated by computer. Ray tracing uses approximate solutions to Maxwell's equations that are valid as long as the light waves propagate through and around objects whose dimensions are much greater than the light's wavelength. Ray optics or geometrical optics does not describe phenomena such as diffraction, which require wave optics theory. Some wave phenomena such as interference can be modeled in limited circumstances by adding phase to the ray model.

Light transport theory deals with the mathematics behind calculating the energy transfers between media that affect visibility. This article is currently specific to light transport in rendering processes such as global illumination and high dynamic range imaging (HDRI).

X-ray optics is the branch of optics dealing with X-rays, rather than visible light. It deals with focusing and other ways of manipulating the X-ray beams for research techniques such as X-ray diffraction, X-ray crystallography, X-ray fluorescence, small-angle X-ray scattering, X-ray microscopy, X-ray phase-contrast imaging, and X-ray astronomy.

<span class="mw-page-title-main">3D rendering</span> Process of converting 3D scenes into 2D images

3D rendering is the 3D computer graphics process of converting 3D models into 2D images on a computer. 3D renders may include photorealistic effects or non-photorealistic styles.

Optical lens design is the process of designing a lens to meet a set of performance requirements and constraints, including cost and manufacturing limitations. Parameters include surface profile types, as well as radius of curvature, distance to the next surface, material type and optionally tilt and decenter. The process is computationally intensive, using ray tracing or other techniques to model how the lens affects light that passes through it.

Computer graphics lighting is the collection of techniques used to simulate light in computer graphics scenes. While lighting techniques offer flexibility in the level of detail and functionality available, they also operate at different levels of computational demand and complexity. Graphics artists can choose from a variety of light sources, models, shading techniques, and effects to suit the needs of each application.

<span class="mw-page-title-main">Kerkythea</span> Standalone rendering system

Kerkythea is a standalone rendering system that supports raytracing and Metropolis light transport, uses physically accurate materials and lighting, and is distributed as freeware. Currently, the program can be integrated with any software that can export files in obj and 3ds formats, including 3ds Max, Blender, LightWave 3D, SketchUp, Silo and Wings3D.

In physics, ray tracing is a method for calculating the path of waves or particles through a system with regions of varying propagation velocity, absorption characteristics, and reflecting surfaces. Under these circumstances, wavefronts may bend, change direction, or reflect off surfaces, complicating analysis.

References

  1. Lynch, DK; Livingston, W (2001). "The caustic network". Color and Light in Nature. Cambridge University Press. ISBN   978-0-521-77504-5.
  2. 1 2 Weinstein, Lev Albertovich (1969). Open Resonators and Open Waveguides. Boulder, Colorado: The Golem Press.
  3. Circle Catacaustic. Wolfram MathWorld. Retrieved 2009-07-17.
  4. Levi, Mark (2018-04-02). "Focusing on Nephroids". SIAM News. Archived from the original on 2023-06-27. Retrieved 2018-06-01.
  5. Rainbow caustics
  6. Caustic fringes
  7. Guardado, Juan (2004). "Chapter 2. Rendering Water Caustics". In Fernando, Randima (ed.). GPU Gems: Programming Techniques, Tips and Tricks for Real-Time Graphics. Addison-Wesley. ISBN   978-0321228321.
  8. "Caustics water texturing using Unity 3D". Dual Heights Software. Retrieved May 28, 2017.
  9. Marios Papas (April 2011). "Goal Based Caustics" (PDF). Computer Graphics Forum (Proc. Eurographics). 30 (2): 503–511. doi:10.1111/j.1467-8659.2011.01876.x. Archived (PDF) from the original on May 11, 2021. (Additional resources at Wojciech Jarosz's Dartmouth College site)
  10. Villani, Cedric (2009). Optimal Transport - Old and New. Springer-Verlag Berlin Heidelberg. ISBN   978-3-540-71049-3.
  11. Philip Ball (February 2013). "Light tamers". New Scientist. 217 (2902): 40–43. Bibcode:2013NewSc.217...40B. doi:10.1016/S0262-4079(13)60310-3.
  12. Choreographing light: New algorithm controls light patterns called 'caustics', organizes them into coherent images
  13. Schwartzburg, Yuliy; Testuz, Romain; Tagliasacchi, Andrea; Pauly, Mark (27 July 2014). "High-contrast computational caustic design". ACM Transactions on Graphics. 33 (4): 1–11. doi:10.1145/2601097.2601200.
  14. Cédric, Villani (2009). Optimal Transport, Old and New. Springer. ISBN   978-3-540-71050-9.

Further reading