Eunotosaurus Temporal range: Middle Permian, | |
---|---|
Fossil specimen, on display at Karoo National Park | |
Scientific classification | |
Domain: | Eukaryota |
Kingdom: | Animalia |
Phylum: | Chordata |
Clade: | Reptiliomorpha |
Clade: | Amniota |
Clade: | Sauropsida |
Genus: | † Eunotosaurus Seeley, 1892 |
Species: | †E. africanus |
Binomial name | |
†Eunotosaurus africanus Seeley, 1892 | |
Eunotosaurus ( Latin : Stout-backed lizard) is an extinct genus of amniote, possibly a close relative of turtles. Eunotosaurus lived in the late Middle Permian (Capitanian stage) and fossils can be found in the Karoo Supergroup of South Africa and Malawi. Eunotosaurus resided in the swamps of what is now southern Africa. [1] Its ribs were wide and flat, forming broad plates similar to a primitive turtle shell, and the vertebrae were nearly identical to those of some turtles. Accordingly, it is often considered as a possible transitional fossil between turtles and their prehistoric ancestors. [2] [3] However, it is possible that these turtle-like features evolved independently of the same features in turtles, since other anatomical studies and phylogenetic analyses suggest that Eunotosaurus may instead have been a parareptile, [4] an early-diverging neodiapsid unrelated to turtles, [5] or a synapsid. [6]
Eunotosaurus reached up to 30 cm (12 in) in total body length. [7] It had a broad body formed by nine pairs of widened ribs that overlap each other. The forward-most ribs are angled slightly backward and the backward-most ribs angle slightly forward. The ribs are T-shaped in cross section, each having a broad, flat surface on the top and a narrow ridge running along its length on the bottom. The upper surface is convex, giving the body of Eunotosaurus a rounded shape. Each pair of ribs connects to an elongated dorsal or back vertebra. Most ribs are fused to the vertebrae, but some smaller specimens of Eunotosaurus have rib pairs that connect with the vertebrae but are not fused to them. There are nine dorsal vertebrae, far fewer than what is seen in other parareptiles. The neck of Eunotosaurus is short, consisting of six short cervical vertebrae. [8] [7]
Histological analysis of cross-sections of the ribs indicate that they grew in three different phases as an individual developed. As is the case in most land vertebrates, the first phase involves the growth of a rib primordium that ossifies into a rib bone. The second phase, which deviates from most other land vertebrates, is the development of a shelf of bone above the main shaft of the rib to form the T-shape. The third and final phase is the widening of the lower ridge into a teardrop-like shape, reinforcing the rib. While the third phase is unique to Eunotosaurus, the second phase is also seen in modern turtles. In turtles, the shelf of bone that forms from the rib shaft becomes a plate of the shell or carapace. In each rib of Eunotosaurus, the posterior surface of the lower ridge has Sharpey's fibers embedded in it. Sharpey's fibers help anchor muscles to bone. Most amniotes have Sharpey's fibers on the posterior and anterior edges of the ribs because the ribs are connected to each other by intercostal muscles, which are muscles that assist in breathing. The lack of Sharpey's fibers on the anterior side of the ribs of Eunotosaurus suggests that it lacked functional intercostal muscles. Turtles also lack intercostal muscles and instead have muscles that connect to the undersides of the ribs for the purpose of locomotion. If Eunotosaurus is close to the ancestry of turtles, it may have had similar sets of muscles. [8]
Even though Eunotosaurus has been traditionally considered an anapsid, it is considered to possess a lower temporal fenestra, though without the temporal bar. Moreover, a juvenile specimen also shows upper temporal fenestrae, meaning the skull demonstrates a fully diapsid condition. In the adult, the upper fenestra is covered by the supratemporal bone. [9]
Eunotosaurus was named in 1892 for a specimen (now NHMUK PV R 1968 in the Natural History Museum, London) that he had obtained from Mr L. Pienaar at the farm Weltevreden near Beaufort West, during Seeley's visit to South Africa in 1889. Seeley was uncertain of the systematic position of Eunotosaurus, but postulated that it was likely referable to the Mesosauria, based on the pubis. [10] It was not until 1914 that it was proposed to be an ancestor of Chelonia, the turtle order. English zoologist D. M. S. Watson claimed that Eunotosaurus was transitional between cotylosaurs (now referred to as captorhinids) and Chelonia. [11] He compared it to "Archichelone", a name he devised for a hypothetical chelonian ancestor, noting that its ribs appeared to be intermediate between those of turtles and other tetrapods. Watson's "Archichelone" had a pelvic girdle that was pushed back on the vertebral column and placed under the shell. However, fossils of Eunotosaurus show that the pelvis is in the normal tetrapod position and is placed over the ribs rather than within them, as in modern turtles. [12] Many fossils have been found showing a semi-rigid, turtle-like rib cage, one which presumably necessitated a tortoise-like fashion of walking. [13]
Eunotosaurus was considered the ancestor of turtles up until the late 1940s. In his 1956 book Osteology of the Reptiles, American paleontologist Alfred Sherwood Romer claimed that Eunotosaurus could not be included within Chelonia based on the available evidence. He placed it within Anapsida in its own order incertae sedis . [12] [14]
Over a century after its naming, Eunotosaurus was known from less than a dozen specimens, with very little material known from the skull. Despite the paucity of material, it was well described. Two additional skeletons were unearthed from the Karoo Supergroup and described in 1999. They are now housed in the Bernard Price Institute for Palaeontological Research in Johannesburg and the National Museum, Bloemfontein. While relatively rare, Eunotosaurus is common enough in the Karoo to be used as a biostratigraphic marker. It is present in the upper Tapinocephalus Assemblage Zone and in all parts of the succeeding Pristerognathus Assemblage Zone. [15] In 2024, an articulated Eunotosaurus fossil was described from the collections of the Cultural & Museum Centre Karonga in Malawi, having been discovered in 2016 by a herdsman in the Mwesia Beds of Karonga. This marked the first occurrence of Eunotosaurus outside South Africa, and confirm that the Mwesia Beds correspond with the Tapinocephalus and Pristerognathus zones. [16]
The ribs of Eunotosaurus were very wide and flat, touching each other to form broad plates similar to the carapace of a turtle. Moreover, the number of vertebrae, the size of the vertebrae, and their structure are nearly identical to those of some turtles. Despite its many similarities to turtles, Eunotosaurus has a skull that shares many characteristics with the skulls of more primitive reptiles, resulting in many studies placing it in the extinct group Parareptilia. Phylogenetic analyses that use only the physical features of fossils and living species to determine evolutionary relationships have often shown strong support for both Eunotosaurus and turtles being descendants of parareptiles, in which case Eunotosaurus. [8] However, analyses which also include genetic data from living reptiles strongly support the idea that turtles fall within a group called Diapsida, as close relatives of either lizards (in which case they would be lepidosauromorphs) or birds and crocodiles (making them archosauromorphs). According to this view, the expanded ribs and similar vertebral columns of Eunotosaurus and turtles may be a case of evolutionary convergence. [17] However, the discovery of Pappochelys , a prehistoric species whose fossil remains show a mixture of features found in Eunotosaurus and the toothed stem-turtle Odontochelys , helped to resolve the issue. Though an analysis which included data from Pappochelys found weak support for the idea that Eunotosaurus was a parareptile, it found stronger support for the hypothesis that Eunotosaurus was itself a diapsid closely related to turtles, and that its apparently primitive, anapsid skull was probably developed as part of the turtle lineage, independently of parareptiles. [18] [7]
Eunotosaurus was assigned to its own family, Eunotosauridae, in 1954. [19] However, this name has fallen into disuse. In 1969, it was placed in the parareptile suborder Captorhinomorpha, [20] which is now[ when? ] considered to be within the clade Eureptilia. [21] In 2000, Eunotosaurus was placed in the clade Parareptilia, separate from turtles and cotylosaurs. [22] A 2008 phylogenetic analysis of parareptiles found Eunotosaurus to be the sister taxon of Milleretta and thus within the family Millerettidae. [23]
Eunotosaurus was incorporated in a recent 2010 phylogenetic analysis that sought to determine the origin of turtles. [24] [7] Turtles have recently been considered diapsids on the basis of genetic and phylogenetic evidence, and thus more closely related to modern lizards, snakes, crocodiles, and birds than parareptiles. However, with the inclusion of Eunotosaurus and the Late Triassic stem turtle Proganochelys , the resulting phylogenetic tree placed turtles outside Diapsida in a position similar to turtle's original placement as parareptiles. This study claimed that Eunotosaurus shared derived features of its ribs and vertebrae with the earliest turtles, thus making it a transitional form. The study identified several features that united Eunotosaurus with turtles in a true clade. [7] These include broad T-shaped ribs, ten elongated trunk vertebrae, cranial tubercles (small projections on the surface of the skull), and a wide trunk. The clade consisting of Eunotosaurus and turtles was called Pan-Testudines (defined as all animals more closely related to turtles than to any other living group). More derived pan-testudines, such as the earliest turtle Odontochelys, have a plastron. [24]
The following cladogram shows the phylogenetic position of the Eunotosaurus, from Ruta et al., 2011. [25]
The cladogram below follows the most likely result found by another analysis of turtle relationships, published by Rainer Schoch and Hans-Dieter Sues in 2015. This study found Eunotosaurus to be an actual early stem-turtle, though other versions of the analysis found weak support for it as a parareptile. [18]
Archelosauria |
| |||||||||||||||||||||||||||
The following cladogram is adapted from a 2022 study by Simões et al. Here, Eunotosaurus was recovered as neither a parareptile or a stem-turtle, but as a basal neodiapsid located outside the reptilian crown group. [5]
An anapsid is an amniote whose skull lacks one or more skull openings near the temples. Traditionally, the Anapsida are considered the most primitive subclass of amniotes, the ancestral stock from which Synapsida and Diapsida evolved, making anapsids paraphyletic. It is, however, doubtful that all anapsids lack temporal fenestra as a primitive trait, and that all the groups traditionally seen as anapsids truly lacked fenestra.
Diapsids are a clade of sauropsids, distinguished from more primitive eureptiles by the presence of two holes, known as temporal fenestrae, in each side of their skulls. The earliest traditionally identified diapsids, the araeoscelidians, appeared about three hundred million years ago during the late Carboniferous period. All diapsids other than the most primitive ones in the clade Araeoscelidia are often placed into the clade Neodiapsida. The diapsids are extremely diverse, and include birds and all modern reptile groups, including turtles, which were historically thought to lie outside the group. All modern reptiles and birds are placed within the neodiapsid subclade Sauria. Although some diapsids have lost either one hole (lizards), or both holes, or have a heavily restructured skull, they are still classified as diapsids based on their ancestry. At least 17,084 species of diapsid animals are extant: 9,159 birds, and 7,925 snakes, lizards, tuatara, turtles, and crocodiles.
Sauropsida is a clade of amniotes, broadly equivalent to the class Reptilia, though typically used in a broader sense to also include extinct stem-group relatives of modern reptiles and birds. The most popular definition states that Sauropsida is the sibling taxon to Synapsida, the other clade of amniotes which includes mammals as its only modern representatives. Although early synapsids have historically been referred to as "mammal-like reptiles", all synapsids are more closely related to mammals than to any modern reptile. Sauropsids, on the other hand, include all amniotes more closely related to modern reptiles than to mammals. This includes Aves (birds), which are recognized as a subgroup of archosaurian reptiles despite originally being named as a separate class in Linnaean taxonomy.
Mesosaurs were a group of small aquatic reptiles that lived during the early Permian period (Cisuralian), roughly 299 to 270 million years ago. Mesosaurs were the first known aquatic reptiles, having apparently returned to an aquatic lifestyle from more terrestrial ancestors. It is uncertain which and how many terrestrial traits these ancestors displayed; recent research cannot establish with confidence if the first amniotes were fully terrestrial, or only amphibious. Most authors consider mesosaurs to have been aquatic, although adult animals may have been amphibious, rather than completely aquatic, as indicated by their moderate skeletal adaptations to a semiaquatic lifestyle. Similarly, their affinities are uncertain; they may have been among the most basal sauropsids or among the most basal parareptiles.
Pareiasaurs are an extinct clade of large, herbivorous parareptiles. Members of the group were armoured with osteoderms which covered large areas of the body. They first appeared in southern Pangea during the Middle Permian, before becoming globally distributed during the Late Permian. Pareiasaurs were the largest reptiles of the Permian, reaching sizes equivalent to those of contemporary therapsids. Pareiasaurs became extinct in the Permian–Triassic extinction event.
Milleretta is an extinct genus of millerettid parareptile from the Late Permian of South Africa. Fossils have been found in the Balfour Formation. Milleretta was a moderately sized, lizard-like animal, about 60 centimetres (24 in) in length. It was probably insectivorous. Its only known species is Milleretta rubidgei, making Milleretta a monospecific genus.
Captorhinidae is an extinct family of tetrapods, typically considered primitive reptiles, known from the late Carboniferous to the Late Permian. They had a cosmopolitan distribution across Pangea.
Parareptilia ("near-reptiles") is an extinct subclass or clade of basal sauropsids/reptiles, typically considered the sister taxon to Eureptilia. Parareptiles first arose near the end of the Carboniferous period and achieved their highest diversity during the Permian period. Several ecological innovations were first accomplished by parareptiles among reptiles. These include the first reptiles to return to marine ecosystems (mesosaurs), the first bipedal reptiles, the first reptiles with advanced hearing systems, and the first large herbivorous reptiles. The only parareptiles to survive into the Triassic period were the procolophonoids, a group of small generalists, omnivores, and herbivores. The largest family of procolophonoids, the procolophonids, rediversified in the Triassic, but subsequently declined and became extinct by the end of the period.
Procolophonia is an extinct suborder (clade) of herbivorous reptiles that lived from the Middle Permian till the end of the Triassic period. They were originally included as a suborder of the Cotylosauria but are now considered a clade of Parareptilia. They are closely related to other generally lizard-like Permian reptiles such as the Millerettidae, Bolosauridae, Acleistorhinidae, and Lanthanosuchidae, all of which are included under the Anapsida or "Parareptiles".
Procolophonomorpha is an order or clade containing most parareptiles. Many papers have applied various definitions to the name, though most of these definitions have since been considered synonymous with modern parareptile clades such as Ankyramorpha and Procolophonia. The current definition of Procolophonomorpha, as defined by Modesto, Scott, & Reisz (2009), is that of as a stem-based group containing Procolophon and all taxa more closely related to it than to Milleretta. It constitutes a diverse assemblage that includes a number of lizard-like forms, as well as more diverse types such as the pareiasaurs. Lee 1995, 1996, 1997 argues that turtles evolved from pareiasaurs, but this view is no longer considered likely. Rieppel and deBraga 1996 and deBraga and Rieppel, 1997 argue that turtles evolved from sauropterygians, and there is both molecular and fossil (Pappochelys) evidence for the origin of turtles among diapsid reptiles.
The Tapinocephalus Assemblage Zone is a tetrapod assemblage zone or biozone which correlates to the middle Abrahamskraal Formation, Adelaide Subgroup of the Beaufort Group, a fossiliferous and geologically important geological Group of the Karoo Supergroup in South Africa. The thickest outcrops, reaching approximately 2,000 metres (6,600 ft), occur from Merweville and Leeu-Gamka in its southernmost exposures, from Sutherland through to Beaufort West where outcrops start to only be found in the south-east, north of Oudshoorn and Willowmore, reaching up to areas south of Graaff-Reinet. Its northernmost exposures occur around the towns Fraserburg and Victoria West. The Tapinocephalus Assemblage Zone is the second biozone of the Beaufort Group.
The Pristerognathus Assemblage Zone is a tetrapod assemblage zone or biozone which correlates to the upper Abrahamskraal Formation and lowermost Teekloof Formation, Adelaide Subgroup of the Beaufort Group, a fossiliferous and geologically important geological Group of the Karoo Supergroup in South Africa. The thickest outcrops, reaching not more than 300 metres (980 ft), occur just east of Sutherland through to Beaufort West in the south and Victoria West in the north. Exposures are also found west of Colesberg and south of Graaff-Reinet. The Pristerognathus Assemblage Zone is the third biozone of the Beaufort Group.
The turtle shell is a shield for the ventral and dorsal parts of turtles, completely enclosing all the vital organs of the turtle and in some cases even the head. It is constructed of modified bony elements such as the ribs, parts of the pelvis and other bones found in most reptiles. The bone of the shell consists of both skeletal and dermal bone, showing that the complete enclosure of the shell likely evolved by including dermal armor into the rib cage.
Acerosodontosaurus is an extinct genus of neodiapsid reptiles that lived during the Late Permian of Madagascar. The only species of Acerosodontosaurus, A. piveteaui, is known from a natural mold of a single partial skeleton including a crushed skull and part of the body and limbs. The fossil was discovered in deposits of the Lower Sakamena Formation. Based on skeletal characteristics, it has been suggested that Acerosodontosaurus individuals were at least partially aquatic.
Acleistorhinus (ah-kles-toe-RYE-nuss) is an extinct genus of parareptile known from the Early Permian of Oklahoma. It is notable for being the earliest known anapsid reptile yet discovered. The morphology of the lower temporal fenestra of the skull of Acleistorhinus bears a superficial resemblance to that seen in early synapsids, a result of convergent evolution. Only a single species, A. pteroticus, is known, and it is classified in the Family Acleistorhinidae, along with Colobomycter.
Owenetta is an extinct genus of owenettid procolophonian parareptile. Fossils have been found from the Beaufort Group in the Karoo Basin of South Africa. Although most procolophonians lived during the Triassic, Owenetta existed during the Wuchiapingian and Changhsingian stages of the Late Permian as well as the early Induan stage of the Early Triassic. It is the type genus of the family Owenettidae, and can be distinguished from other related taxa in that the posterior portion of the supratemporal bears a lateral notch and that the pineal foramen is surrounded by a depressed parietal surface on the skull table.
Reptiles arose about 320 million years ago during the Carboniferous period. Reptiles, in the traditional sense of the term, are defined as animals that have scales or scutes, lay land-based hard-shelled eggs, and possess ectothermic metabolisms. So defined, the group is paraphyletic, excluding endothermic animals like birds that are descended from early traditionally-defined reptiles. A definition in accordance with phylogenetic nomenclature, which rejects paraphyletic groups, includes birds while excluding mammals and their synapsid ancestors. So defined, Reptilia is identical to Sauropsida.
The Abrahamskraal Formation is a geological formation and is found in numerous localities in the Northern Cape, Western Cape, and the Eastern Cape of South Africa. It is the lowermost formation of the Adelaide Subgroup of the Beaufort Group, a major geological group that forms part of the greater Karoo Supergroup. It represents the first fully terrestrial geological deposits of the Karoo Basin. Outcrops of the Abrahamskraal Formation are found from the small town Middelpos in its westernmost localities, then around Sutherland, the Moordenaarskaroo north of Laingsburg, Williston, Fraserburg, Leeu-Gamka, Loxton, and Victoria West in the Western Cape and Northern Cape. In the Eastern Cape outcrops are known from Rietbron, north of Klipplaat and Grahamstown, and also southwest of East London.
Pantestudines or Pan-Testudines is the proposed group of all reptiles more closely related to turtles than to any other living animal. It includes both modern turtles and all of their extinct relatives. Pantestudines with a complete shell are placed in the clade Testudinata.
Pappochelys is an extinct genus of diapsid reptile possibly related to turtles. The genus contains only one species, Pappochelys rosinae, from the Middle Triassic of Germany, which was named by paleontologists Rainer Schoch and Hans-Dieter Sues in 2015. The discovery of Pappochelys provides strong support for the placement of turtles within Diapsida, a hypothesis that has long been suggested by molecular data, but never previously by the fossil record. It is morphologically intermediate between the definite stem-turtle Odontochelys from the Late Triassic of China and Eunotosaurus, a reptile from the Middle Permian of South Africa.