Karoo Supergroup

Last updated
Stratigraphy of the Karoo Supergroup in the Karoo Basin
Period Group Formation west of 24°EFormation east of 24°E Assemblage Zone
Jurassic Drakensberg Hiatus Drakensberg
Stormberg Clarens
Triassic Elliot
Molteno
Beaufort
Burgersdorp Cynognathus
Katberg Lystrosaurus
Balfour
Permian Dicynodon
Teekloof
Cistecephalus
Middleton
Tropidostoma
Pristerognathus
Abrahams-Kraal Abrahams-Kraal
Tapinocephalus
Eodicynodon
Ecca Waterford Waterford
Tierberg / Fort Brown Fort Brown
Laingsburg / Ripon Ripon
Collingham Collingham
Whitehill Whitehill
Prince Albert Prince Albert
Carboniferous Dwyka Elandsvlei Elandsvlei
References: Rubidge (2005), [1] Selden and Nudds (2011). [2]

The Karoo Supergroup is the most widespread stratigraphic unit in Africa south of the Kalahari Desert. The supergroup consists of a sequence of units, mostly of nonmarine origin, deposited between the Late Carboniferous and Early Jurassic, a period of about 120 million years. [3]

Contents

In southern Africa, rocks of the Karoo Supergroup cover almost two thirds of the present land surface, making part of the 75% of sediments or sedimentary rocks covering the earth including all of Lesotho, almost the whole of Free State, and large parts of the Eastern Cape, Northern Cape, Mpumalanga and KwaZulu-Natal Provinces of South Africa. Karoo supergroup outcrops are also found in Namibia, Eswatini, Zambia, Zimbabwe and Malawi, as well as on other continents that were part of Gondwana. The basins in which it was deposited formed during the formation and breakup of Pangea. [4] [5] The type area of the Karoo Supergroup is the Great Karoo in South Africa, where the most extensive outcrops of the sequence are exposed. [3] [6] Its strata, which consist mostly of shales and sandstones, [7] record an almost continuous sequence of marine glacial to terrestrial deposition from the Late Carboniferous to the Early Jurassic. These accumulated in a retroarc foreland basin called the "main Karoo" Basin. [4] This basin was formed by the subduction and orogenesis along the southern border of what eventually became Southern Africa, in southern Gondwana. [4] Its sediments attain a maximum cumulative thickness of 12 km, with the overlying basaltic lavas (the Drakensberg Group) at least 1.4 km thick. [8]

Fossils include plants (both macro-fossils and pollen), rare insects and fish, common and diverse tetrapods (mostly therapsid reptiles, temnospondyl amphibians, and in the upper strata dinosaurs), and ichnofossils. Their biostratigraphy has been used as the international standard for global correlation of Permian to Jurassic nonmarine strata. [9]

A timeline of the Earth's geological history, with an emphasis on events in Southern Africa. The green block labeled K indicates when the Karoo Supergroup was deposited, in relation to the Cape supergroup, C, immediately before it. The W indicates when the Witwatersrand supergroup was laid down, very much further in the past. The graph also indicates the period during which banded ironstone formations were formed on Earth, indicative of an oxygen-free atmosphere. The Earth's crust was wholly or partially molten during the Hadean Eon; the oldest rocks on Earth are therefore less than 4000 million years old. One of the first microcontinents to form was the Kaapvaal Craton, which forms the foundation of the north-eastern part of the country. The assembly and break-up of Gondwana are, in terms of the Earth's and South Africa's geological history, relatively recent events. Earth's geolological timeline.svg
A timeline of the Earth's geological history, with an emphasis on events in Southern Africa. The green block labeled K indicates when the Karoo Supergroup was deposited, in relation to the Cape supergroup, C, immediately before it. The W indicates when the Witwatersrand supergroup was laid down, very much further in the past. The graph also indicates the period during which banded ironstone formations were formed on Earth, indicative of an oxygen-free atmosphere. The Earth's crust was wholly or partially molten during the Hadean Eon; the oldest rocks on Earth are therefore less than 4000 million years old. One of the first microcontinents to form was the Kaapvaal Craton, which forms the foundation of the north-eastern part of the country. The assembly and break-up of Gondwana are, in terms of the Earth's and South Africa's geological history, relatively recent events.

Geological origin

Southern Gondwana during the Cambrian-Ordovician Periods. Today's continents into which this Supercontinent eventually broke up, are indicated in brown. A rift developed about 510 million years ago, separating Southern Africa from the Falkland Plateau. Flooding of the rift formed the Agulhas Sea. The sediments which accumulated in this shallow sea consolidated to form the Cape Supergroup of rocks, which form the Cape Fold Belt today. This portion of Gondwana was probably located on the opposite side of the South Pole from Africa's present position, but compass bearings are nevertheless given as if Africa was in its present position. Southern Gondwana.png
Southern Gondwana during the Cambrian-Ordovician Periods. Today's continents into which this Supercontinent eventually broke up, are indicated in brown. A rift developed about 510 million years ago, separating Southern Africa from the Falkland Plateau. Flooding of the rift formed the Agulhas Sea. The sediments which accumulated in this shallow sea consolidated to form the Cape Supergroup of rocks, which form the Cape Fold Belt today. This portion of Gondwana was probably located on the opposite side of the South Pole from Africa's present position, but compass bearings are nevertheless given as if Africa was in its present position.
A schematic geological map of the outcrops of the Karoo Supergroup rocks in Southern Africa. The location and approximate structure of the Cape Fold Mountains are also diagrammatically indicated for reference purposes Geology of Karoo Supergroup.png
A schematic geological map of the outcrops of the Karoo Supergroup rocks in Southern Africa. The location and approximate structure of the Cape Fold Mountains are also diagrammatically indicated for reference purposes
An approximate SW-NE geological cross section through South Africa, with the Cape Peninsula (with Table Mountain) on left, and north-eastern KwaZulu-Natal on the right. Diagrammatic and not to scale. The color code of the Karoo Supergroup is the same as in the illustration above. SW-NE geological cross section through South Africa.jpg
An approximate SW-NE geological cross section through South Africa, with the Cape Peninsula (with Table Mountain) on left, and north-eastern KwaZulu-Natal on the right. Diagrammatic and not to scale. The color code of the Karoo Supergroup is the same as in the illustration above.

Origins of sediment deposition

About 510 million years ago a rift valley developed across Southern Gondwana just south of Southern Africa, but extending westward into South America, and eastward into Eastern Antarctica and possibly even into Australia. [5] [10] [11] [13] An 8 km thick layer of sediment, known as the Cape Supergroup, accumulated on the floor of this rift valley. [5] Closure of the rift valley, starting 330 million years ago, resulted from the development of a subduction zone along the southern margin of Gondwana, and the consequent drift of the Falkland Plateau back towards Africa, during the Carboniferous and Early Permian periods. After closure of the rift valley, and compression of the Cape Supergroup into a series of parallel folds, running mainly east–west, the continued subduction of the paleo-Pacific Plate beneath the Falkland Plateau and the resulting collision of the latter with Southern Africa, raised a mountain range of immense proportions to the south of the former rift valley. The folded Cape Supergroup formed the northern foothills of this mountain range.

The weight of the Falkland-Cape Supergroup mountains caused the continental crust of Southern Africa to sag, forming a retroarc foreland system, which became flooded to form the Karoo Sea. Sedimentation, beginning with glacial deposits from the north, but later from the Falkland Mountains to the south, into this depression formed the Karoo Supergroup. [5] [13] [14]

The Dwyka group

A north-south cross-section through the Agulhas Sea (see above). The brown structures are continental plates, the thick black layer on the left is paleo-Pacific Oceanic plate, red indicates the upper mantle, and blue indicates flooded areas or ocean. The top illustration depicts the geology about 510 million years ago, with the sediments which would eventually form the Cape Supergroup settling in the Agulhas Sea. The middle illustration depicts the Falkland Plateau drifting northwards once again to close the Agulhas Sea, causing the Cape Supergroup to be rucked into a series of folds, running predominantly east-west. The lowest illustration shows how subduction of the paleo-Pacific Oceanic plate under the Falkland Plateau, during the Early Permian period, raised a massive range of mountains. These eventually eroded into the Karoo Sea, forming, especially, the Beaufort Group of the Karoo Supergroup. Formation of Cape Fold Mountains.jpg
A north-south cross-section through the Agulhas Sea (see above). The brown structures are continental plates, the thick black layer on the left is paleo-Pacific Oceanic plate, red indicates the upper mantle, and blue indicates flooded areas or ocean. The top illustration depicts the geology about 510 million years ago, with the sediments which would eventually form the Cape Supergroup settling in the Agulhas Sea. The middle illustration depicts the Falkland Plateau drifting northwards once again to close the Agulhas Sea, causing the Cape Supergroup to be rucked into a series of folds, running predominantly east–west. The lowest illustration shows how subduction of the paleo-Pacific Oceanic plate under the Falkland Plateau, during the Early Permian period, raised a massive range of mountains. These eventually eroded into the Karoo Sea, forming, especially, the Beaufort Group of the Karoo Supergroup.

About 330 million years ago Gondwana had drifted over the South Pole, [15] with the result that an ice sheet several kilometers thick covered much of Africa, and other parts of Gondwana. [5] [15] The glacial deposits from this ice sheet were the first of the sediments to be deposited to the north of the Cape Fold Mountains (and partially over these incipient mountains). The basin into which these sediments settled was deepest immediately north of the Cape Fold Mountain ranges. The ice sheet therefore floated on an inland lake, termed the Karoo inland sea, into which icebergs which had calved off the glaciers and ice sheet to the north deposited vast quantities of mud and rocks of various sizes and origins. Such deposits are known as tillite. [11] Further north, the ice sheet was grounded also leaving diamictite deposits whenever it partially melted, but, in addition, it scoured the bedrock, leaving behind striations (scratch marks) which can be seen near Barkly West in the Northern Cape, and in the grounds of the University of KwaZulu-Natal. [5] [11] This layer of tillite, traces of which can be found over a wide area of Southern Africa, India, and South America provided crucial early evidence in support of the Theory of Continental Drift. In South Africa the layer is known as the Dwyka Group. It is the earliest and lowermost of the Karoo Supergroup of sedimentary deposits. [3] [4]

The Ecca group

As Gondwana drifted away from the South Pole, the glaciers melted, leaving a vast inland sea, extending across South Africa, and neighboring regions of Gondwana. It might have had an opening to the ocean (similar to the Black Sea) but tidal effects were small. Rivers draining mountains to the north of the Karoo Sea formed large swampy deltas in which plants belonging to the Glossopteris flora flourished. This dense vegetation accumulated as peat, which eventually turned into coal. The coal deposits are confined to the northern shores of the early Permian Karoo Sea, and is mined today in the Highveld and KwaZulu-Natal. [5] [6] [11]

These sedimentary deposits are termed the Ecca Group of the Karoo Supergroup. They consist largely of shales and sandstones, [16] and extend over the entire former Karoo Sea, but the southerly deposits do not contain coal, even though rivers from the Cape Fold Mountains formed small deltas. Although the vegetation in the south was not as dense as on the northern shores of the inland sea, several early reptiles such as Mesosaurus are found in these Ecca deposits. This is a fossil reptile found only in Southern Africa and Brazil providing important paleontological evidence of the existence of the Gondwana supercontinent. [5] [11]

The northern shores contain mainly fossil plants, pollens and spores. Fossils of a cephalopod and some echinoids are also found in the north. [11]

Turbidites are deposited in deep water at the bottom of the edges of continental shelves or similar structures in deep lakes, such as the south-western Karoo Sea about 300 million years ago. They are the result of underwater avalanches of mud and sand cascading down the steep slope of the edge of the shelf. When the avalanche settles in the deep water trough, the sand and other coarse material settles first, then the mud and eventually the finest particles. Organic matter that came down with the avalanche ends up in the turbidite in an anoxic (oxygen free) environment where it is converted to petroleum (oil and gas). Turbidite formation.jpg
Turbidites are deposited in deep water at the bottom of the edges of continental shelves or similar structures in deep lakes, such as the south-western Karoo Sea about 300 million years ago. They are the result of underwater avalanches of mud and sand cascading down the steep slope of the edge of the shelf. When the avalanche settles in the deep water trough, the sand and other coarse material settles first, then the mud and eventually the finest particles. Organic matter that came down with the avalanche ends up in the turbidite in an anoxic (oxygen free) environment where it is converted to petroleum (oil and gas).
An Ecca mountain in the Tanqua Karoo, with multiple turbidite fans, indicating that the south-western portion of Karoo Sea was very deep, with steep slopes leading up to the shore line. The underwater avalanches were probably triggered by frequent earthquakes as the Cape Fold Mountains were being formed towards the south. The Ecca Turbidite deposits should not be confused with the dolerite sills found further inland (illustrated and described lower down, on the right, in the article) . The turbidites can be recognized at close quarters by the fact that the lowermost portion of each layer tends to be made up of sandstone which gradually grades into fine siltstone at the top of the layer. Tanqua Karoo Turbidite Mt.jpg
An Ecca mountain in the Tanqua Karoo, with multiple turbidite fans, indicating that the south-western portion of Karoo Sea was very deep, with steep slopes leading up to the shore line. The underwater avalanches were probably triggered by frequent earthquakes as the Cape Fold Mountains were being formed towards the south. The Ecca Turbidite deposits should not be confused with the dolerite sills found further inland (illustrated and described lower down, on the right, in the article) . The turbidites can be recognized at close quarters by the fact that the lowermost portion of each layer tends to be made up of sandstone which gradually grades into fine siltstone at the top of the layer.

During the Ecca period the Falklands Plateau collided and then fused with Southern Africa, forming a vast range of mountains to the south of the Cape Fold Belt. This new mountain range was comparable in size to the Himalayas. [5] The northern slopes of these mountains generally dipped steeply into the Karoo Sea which was at its deepest at this point. The earthquakes that accompanied the formation of the Cape Mountains therefore initiated frequent underwater mud- and rock-slides, forming fan-shaped accumulations of turbidites, which can be seen in the south west corner of the Karoo today (see photograph lower down on the right) the Ecca group also has its members that are named based on the lithologies of the locality they are in . [5] [15] [17] Turbidites have for some time been recognized as petroleum producing rocks, because the underwater avalanches that cause these deposits often carry organic matter from close to the coastline, especially near river estuaries and deltas, into the anoxic depths of adjoining troughs. Here it is buried in the turbidite and turns into hydrocarbons, particularly petroleum and gas. The turbidites in the Ecca formation of the Tanqua and Laingsburg Karoo regions have thus, recently, come under scrutiny by the petroleum industry and geologists, who have found them to have rich and readily accessible deposits of oil and gas. Thus the north-eastern Ecca basin is rich in coal, while its south-western corner is becoming renowned for its oils reserves. [17]

Beaufort Group

Moschops was a therapsid from the Middle Permian of South Africa. Moschops BW.jpg
Moschops was a therapsid from the Middle Permian of South Africa.
Lystrosaurus was the most common synapsid shortly after the Permian-Triassic extinction event. Lystr georg1DB.jpg
Lystrosaurus was the most common synapsid shortly after the Permian–Triassic extinction event.

With the formation of the Falkland Plateau and Cape Fold Mountain ranges, rivers from the south began to dominate the sedimentation in the Karoo Sea, which began to silt up. (The highlands to the north of the Karoo Sea had, by this time, been leveled by erosion and begun to be buried under newer sediments.) Several Mississippi-like rivers flowed over the silted up Karoo Basin from the south, creating rich new habitats for a variety of flora and fauna. The terrestrial (as opposed to lacunar or marine) deposits created by these rivers gave rise to the Beaufort Group. It is composed of a monotonous sequence of shales and mudstones, with some interbedded lenticular sandstones. [11] The Beaufort Group is rich in reptilian, and to a lesser extent, amphibian remains. There is a plethora of both herbivorous and carnivorous reptile fossils. [11] The Beaufort rocks are internationally famous for its rich record of therapsid synapsids (mammal-like reptiles), which mark an intermediary stage in the evolution of the mammals from reptiles. [5] [11] The most abundant herbivores were the anomodonts, whose most primitive forms are also known from the Beaufort rocks. The dinocephalians (terrible head) are so named because of their extraordinary thick boned skulls, which were probably used for head butting during territorial fights. With their 3-meter body length, they were the first large animals to live on land. [5]

During the course of the laying down of the 6 km thick Beaufort deposits, the massive end-Permian mass extinction, 251 million years ago, extinguished about 96% of all species alive at that time. [5] The global event can clearly be seen in the Beaufort rocks. A few members of the genus Lystrosaurus were the only mammal-like reptiles that survived this event. The Beaufort sediments that were laid down after this event tend to be coarser than the ones that preceded them, probably because of a massive die-off of vegetation, which had protected the surface against erosion. These early Triassic sandstone-dominated strata are known as the Katberg formation (within the Beaufort Group), which accumulated to a thickness of 1 km. With time the Beaufort deposits became more fine-grained once again, probably indicating a recovery of the vegetation in the Karoo, and with it the appearance of a wide range of new species, including the dinosaurs, and true mammals during the late Triassic – early Jurassic. [5]

Stormberg group

The Brandwag Rock (or Sentinel) in the Golden Gate Highlands National Park is composed of sandstone belonging to the Clarens Formation. The yellowish hue of the rock is typical of the Clarens rocks. Brandwag rock.JPG
The Brandwag Rock (or Sentinel) in the Golden Gate Highlands National Park is composed of sandstone belonging to the Clarens Formation. The yellowish hue of the rock is typical of the Clarens rocks.

As Gondwana drifted north, conditions in the portion that was to become Southern Africa became increasingly hot and arid. Sandstones were the predominant rocks that formed. However, in some areas there was sufficient water to form swamps with consequent coal formation, but the quality is poor. [5] [11] The landscape probably resembled the Kalahari desert of today, with rivers like the present-day Orange River or the Nile running through it, sustaining localized areas of Triassic flora and fauna. The Stormberg Group contains South Africa's earliest dinosaur fossils. It also contains the fossil remains of the shrew-sized Megazostrodon, the oldest mammal in Africa. [5] A remarkable array of insect and plant fossils are found in some of the strata. [11]

San rock painting of an eland in a Clarens Formation cave in the UKhahlamba Drakensberg Park of KwaZulu-Natal close to the Lesotho border. San Painting, Ukalamba Drakensberge 1.JPG
San rock painting of an eland in a Clarens Formation cave in the UKhahlamba Drakensberg Park of KwaZulu-Natal close to the Lesotho border.

The uppermost strata of the Stormberg group were probably laid down under true sand desert conditions, similar to the Namib Desert in Namibia. It was probably as large as the Sahara Desert today, extending from the Cape Fold Mountains many thousands of kilometers northwards over large parts of Gondwana. [5] Only a small remnant of this massive formation can be found in and around Lesotho today. This formation was formerly known as “Cave Sandstone” as wind-eroded shallow caves often developed in cliffs made up of these rocks. These caves were later used by the San people who frequently decorated the walls with their paintings. [11] Today the Cave Sandstones are called the Clarens Formation.

The oldest dinosaur embryos ever discovered were found in the Clarens Formation in 1978. [18] The eggs were from the Triassic Period (220 to 195 million years ago) and had fossilised foetal skeletons of Massospondylus , a prosauropod dinosaur. More examples of these eggs have since been found in the Golden Gate Highlands National Park, situated on the Clarens Formation rocks. Other fossils found in the park include those of advanced cynodontia (canine toothed animals), small thecodontia (animals with teeth set firmly in the jaw), bird-like and crocodile-like dinosaurs. [19] [20]

Drakensberg and Lebombo groups

About 182 million years ago the southern African portion of Gondwana passed over the Bouvet hotspot [21] [22] causing the crust under the Karoo Supergroup to rupture, releasing huge volumes of basaltic lava over the Clarens desert, covering nearly the whole of Southern Africa and other portions of Gondwana.The pile of lava that accumulated over the course of several eruptions was more than 1600 m thick, especially in the east (in present-day Lesotho). This massive lava outpouring brought the Karoo sedimentation to an abrupt end. [5] [11]

The name Drakensberg Group is derived from the fact that this layer forms the uppermost 1400 m of the Great Escarpment [11] on the international border between Lesotho and KwaZulu-Natal, often referred to as the Drakensberg (although technically the "Drakensberg" refers to the entire 1000 km long eastern portion of the Great Escarpment, only about a third of which is capped by the Drakensberg lavas).

Panorama of the Drakensberg in Giant's Castle region, on the KwaZulu-Natal/Lesotho border. The uppermost layer of this portion of the Great Escarpment is formed by the 1400 m thick Drakensberg Lavas, which rest on the Clarens Formation rocks. GiantsCastlePanoramaSmall.jpg
Panorama of the Drakensberg in Giant's Castle region, on the KwaZulu-Natal/Lesotho border. The uppermost layer of this portion of the Great Escarpment is formed by the 1400 m thick Drakensberg Lavas, which rest on the Clarens Formation rocks.

The magma welled up through long crack-like fissures, with occasional spatter cones, but typical volcanoes were rare. Each surface lava flow was between 10 and 20 meters thick. These flows piled up in rapid succession over 2 million years, to form a single continuous 1 to 1.6 km thick lava layer. However, not all of the magma reached the surface, but extruded under high pressure between the horizontal strata of the Ecca and Beaufort rocks. When this magma solidified it formed multiple dolerite sills at various depths throughout the southern and south-western Karoo sediments. These sills vary in thickness from a few centimeters to hundreds of meters.

This outpouring of lava coincided with uplifting of the Southern African portion of Gondwana, and the formation of rift valleys along what were to become the sea borders of the subcontinent. As these rift valleys widened they became flooded to form the proto-Indian and Southern Atlantic Oceans, as Gondwana fragmented into today's separate continents of South America, Africa, Antarctica, Australia, India, Madagascar and Arabia. [5] [15]

In close association with this rifting, a second episode of basalt eruption occurred along the border with Mozambique to form the Lebombo Mountains. A layer of lava more than 4800 m thick was violently extruded at this time. While the Drakensberg lavas form nearly horizontal layers, the Lebombo lavas dip to the east, so it is difficult to gauge how far the lava spread laterally. [5] [6] [11]

Typical flat topped Karoo Koppies in the Cradock region of the Great Karoo. The dolerite sills are harder and more erosion resistant than the Beaufort shales into which they were intruded, giving these hills their tabletop summits and stepped sides. Karoo Koppies.png
Typical flat topped Karoo Koppies in the Cradock region of the Great Karoo. The dolerite sills are harder and more erosion resistant than the Beaufort shales into which they were intruded, giving these hills their tabletop summits and stepped sides.

The uplifting of Southern Africa heralded a phase of massive erosion, removing a layer several kilometers thick from the African Surface. Nearly all of the Drakensberg lavas were eroded away, leaving a remnant in Lesotho, several small patches on the Springbok Flats in the north of the country, and in the Lebombo mountains along the Mozambique border. Once the layer of hard lava was eroded away, the softer Karoo sediments over the rest of the basin eroded even faster. However, the dolerite sills resisted erosion, protecting the softer Beaufort and Ecca shales beneath them. This created numerous and widespread flat topped hills, known as Karoo Koppies ("koppie" being the Afrikaans term for hill), which are iconic of the Karoo, and, by extension, the South African landscape. The dykes, or vertical fissures which brought the lava to the surface stand out today as linear ridges extending across large stretches of the Karoo.

Post Karoo period

The continued erosion of Southern Africa over the past 180 million years has meant that rocks younger than The Drakensberg Group are almost non-existent over most of the interior. Some of the eroded material from the interior was trapped between the Cape Fold Mountains to the south during the Cretaceous Period to form the Enon Formation and similar deposits near the coast of KwaZulu-Natal, north of Richards Bay. Apart from that, only very minor patches of very recent, mainly sandy deposits occur in South Africa.

The Karoo supergroup elsewhere in Africa

In Zambia, Zimbabwe and Mozambique the Karoo Supergroup is divided into (from oldest to youngest):

See also

Related Research Articles

<span class="mw-page-title-main">Karoo</span> Semi-desert region in South Africa

The Karoo is a semi-desert natural region of South Africa. No exact definition of what constitutes the Karoo is available, so its extent is also not precisely defined. The Karoo is partly defined by its topography, geology and climate, and above all, its low rainfall, arid air, cloudless skies, and extremes of heat and cold. The Karoo also hosted a well-preserved ecosystem hundreds of million years ago which is now represented by many fossils.

<span class="mw-page-title-main">Karoo National Park</span> Wildlife reserve in the Great Karoo area of the Western Cape, South Africa near Beaufort West

The Karoo National Park is a wildlife reserve in the Great Karoo area of the Western Cape, South Africa near Beaufort West. This semi-desert area covers an area of 750 square kilometres (290 sq mi). The Nuweveld portion of the Great Escarpment runs through the Park. It is therefore partly in the Lower Karoo, at about 850 m above sea level, and partly in the Upper Karoo at over 1300 m altitude.

<span class="mw-page-title-main">Beaufort Group</span> Third of the main subdivisions of the Karoo Supergroup in South Africa

The Beaufort Group is the third of the main subdivisions of the Karoo Supergroup in South Africa. It is composed of a lower Adelaide Subgroup and an upper Tarkastad Subgroup. It follows conformably after the Ecca Group and unconformably underlies the Stormberg Group. Based on stratigraphic position, lithostratigraphic and biostratigraphic correlations, palynological analyses, and other means of geological dating, the Beaufort Group rocks are considered to range between Middle Permian (Wordian) to Early Triassic (Anisian) in age.

<span class="mw-page-title-main">Cape Fold Belt</span> Paleozoic fold and thrust belt in South Africa

The Cape Fold Belt is a fold and thrust belt of late Paleozoic age, which affected the sequence of sedimentary rock layers of the Cape Supergroup in the southwestern corner of South Africa. It was originally continuous with the Ventana Mountains near Bahía Blanca in Argentina, the Pensacola Mountains, the Ellsworth Mountains and the Hunter-Bowen orogeny in eastern Australia. The rocks involved are generally sandstones and shales, with the shales persisting in the valley floors while the erosion resistant sandstones form the parallel ranges, the Cape Fold Mountains, which reach a maximum height of 2325 m at Seweweekspoortpiek.

<span class="mw-page-title-main">Great Escarpment, Southern Africa</span> Major topographical feature in Africa

The Great Escarpment is a major topographical feature in Africa that consists of steep slopes from the high central Southern African plateau downward in the direction of the oceans that surround southern Africa on three sides. While it lies predominantly within the borders of South Africa, in the east the escarpment extends northward to form the border between Mozambique and Zimbabwe, continuing on beyond the Zambezi river valley to form the Muchinga Escarpment in eastern Zambia. In the west, it extends northward into Namibia and Angola. It is the combination of this escarpment and the aridity of Southern Africa that leads to the lack of navigable rivers in South Africa.

<i>Eodicynodon</i> Assemblage Zone

The Eodicynodon Assemblage Zone is a tetrapod assemblage zone or biozone which correlates to the Abrahamskraal Formation, Adelaide Subgroup of the Beaufort Group, a fossiliferous and geologically important geological Group of the Karoo Supergroup in South Africa. The thickest outcrops, reaching approximately 620 metres (2,030 ft), occur south-east of Sutherland, north of Prince Albert, and south-east of Beaufort West. The Eodicynodon Assemblage Zone is the lowermost biozone of the Beaufort Group.

<span class="mw-page-title-main">Ecca Group</span> Second of the main subdivisions of the Karoo Supergroup of geological strata in southern Africa

The Ecca Group is the second of the main subdivisions of the Karoo Supergroup of geological strata in southern Africa. It mainly follows conformably after the Dwyka Group in some sections, but in some localities overlying unconformably over much older basement rocks. It underlies the Beaufort Group in all known outcrops and exposures. Based on stratigraphic position, lithostratigraphic correlation, palynological analyses, and other means of geological dating, the Ecca Group ranges between Early to earliest Middle Permian in age.

<span class="mw-page-title-main">Table Mountain Sandstone</span> Group of rock formations within the Cape Supergroup sequence of rocks

Table Mountain Sandstone (TMS) is a group of rock formations within the Cape Supergroup sequence of rocks. Although the term "Table Mountain Sandstone" is still widely used in common parlance, the term TMS is no longer formally recognized; the correct name is the "Peninsula Formation Sandstone", which is part of the Table Mountain Group. The designation "Table Mountain Sandstone" will, however, in deference to the title, continue to be used in the rest of this article. The name is derived from the famous landmark in Cape Town, Table Mountain.

<span class="mw-page-title-main">Clarens Formation</span> Geological formation of the Stormberg Group in southern Africa

The Clarens Formation is a geological formation found in several localities in Lesotho and in the Free State, KwaZulu-Natal, and Eastern Cape provinces in South Africa. It is the uppermost of the three formations found in the Stormberg Group of the greater Karoo Supergroup rocks and represents the final phase of preserved sedimentation of the Karoo Basin.

<span class="mw-page-title-main">Molteno Formation</span> Triassic geological formation in the Stormberg Group in Lesotho and South Africa

The Molteno Formation is a geological formation found in several localities in Lesotho and South Africa. It lies mainly south of Maseru, near Burgersdorp, Aliwal North, Dordrecht, Molteno, and Elliot. It extends as far north as Matatiele in the Eastern Cape. The formation's localities lie along the Drakensberg Mountains in Kwazulu-Natal, and near Ladybrand in the Free State of South Africa. The Molteno Formation is the lowermost of the three formations in the Stormberg Group of the greater Karoo Supergroup. The Molteno Formation represents the initial phase of preserved sedimentation of the Stormberg Group.

<span class="mw-page-title-main">Enon Formation</span> Jurassic-Cretaceous geological formation in the Uitenhage Group of South Africa

The Enon Formation is a geological formation found in the Eastern and Western Cape provinces in South Africa. It is the lowermost of the four formations found within the Uitenhage Group of the Algoa Basin, its type locality, where it has been measured at a maximum thickness of 480 metres (1,570 ft). Discontinuous outcrops are also found in the Worcester-Pletmos and Oudshoorn-Gamtoos Basins, including isolated occurrences in the Haasvlakte, Jubilee, and Soutpansvlakte Basins near the small town Bredasdorp.

<span class="mw-page-title-main">Stormberg Group</span> Triassic/Jurassic geological group in the Karoo Supergroup in South Africa

The Stormberg Group is one of the four geological groups that comprises the Karoo Supergroup in South Africa. It is the uppermost geological group representing the final phase of preserved sedimentation of the Karoo Basin. The Stormberg Group rocks are considered to range between Lower Triassic (Olenekian) to Lower Jurassic (Pliensbachian) in age. These estimates are based on means of geological dating including stratigraphic position, lithostratigraphic and biostratigraphic correlations, and palynological analyses.

<span class="mw-page-title-main">Dwyka Group</span> Geological group in the Karoo Supergroup from South Africa

The Dwyka Group is one of four geological groups that compose the Karoo Supergroup. It is the lowermost geological group and heralds the commencement of sedimentation of the Karoo Supergroup. Based on stratigraphic position, lithostratigraphic correlation and palynological analyses, these lowermost Karoo strata range between the Late Carboniferous (Pennsylvanian) to Early Permian in age.

The geology of Lesotho is built on ancient crystalline basement rock up to 3.6 billion years old, belonging to the Kaapvaal Craton, a section of stable primordial crust. Most of the rocks in the country are sedimentary or volcanic units, belonging to the Karoo Supergroup. The country is notable for large fossil deposits and intense erosion due to high rainfall and a rare case of southern African glaciation during the last ice age. Lesotho has extensive diamonds and other natural resources and has the highest concentration of kimberlite pipes anywhere in the world.

The geology of Malawi formed on extremely ancient crystalline basement rock, which was metamorphosed and intruded by igneous rocks during several orogeny mountain building events in the past one billion years. The rocks of the Karoo Supergroup and newer sedimentary units deposited across much of Malawi in the last 251 million years, in connection with a large rift basin on the supercontinent Gondwana and the more recent rifting that has created the East African Rift, which holds Lake Malawi. The country has extensive mineral reserves, many of them poorly understood or not exploited, including coal, vermiculite, rare earth elements and bauxite.

<span class="mw-page-title-main">Geology of Namibia</span>

The geology of Namibia encompasses rocks of Paleoproterozoic, Mesoproterozoic and Neoproterozoic and Paleozoic to Cenozoic age. About 46% of the countryʼs surface are bedrock exposure, while the remainder is covered by the young overburden sediments of the Kalahari and Namib deserts.

<span class="mw-page-title-main">Geology of Tanzania</span>

The geology of Tanzania began to form in the Precambrian, in the Archean and Proterozoic eons, in some cases more than 2.5 billion years ago. Igneous and metamorphic crystalline basement rock forms the Archean Tanzania Craton, which is surrounded by the Proterozoic Ubendian belt, Mozambique Belt and Karagwe-Ankole Belt. The region experienced downwarping of the crust during the Paleozoic and Mesozoic, as the massive Karoo Supergroup deposited. Within the past 100 million years, Tanzania has experienced marine sedimentary rock deposition along the coast and rift formation inland, which has produced large rift lakes. Tanzania has extensive, but poorly explored and exploited natural resources, including coal, gold, diamonds, graphite and clays.

<span class="mw-page-title-main">Whitehill Formation</span> Early Permian geological formation in South Africa

The Whitehill Formation, alternatively written as White Hill Formation and formerly known as White Band or Whitehill or White Hill Member, is a regional Early Permian geologic formation belonging to the Ecca Group in the southeastern ǁKaras Region of southeastern Namibia and Eastern, Northern and Western Cape provinces of South Africa.

<span class="mw-page-title-main">Teekloof Formation</span> Late Permian geological formation that forms part of the Beaufort Group of South Africa

The Teekloof Formation is a geological formation that forms part of the Beaufort Group, one of the five geological groups that comprises the Karoo Supergroup in South Africa. The Teekloof Formation is the uppermost formation of Adelaide Subgroup deposits West of 24ºE and contains Middle to Late Permian-aged deposits and four biozones of the Beaufort Group. It overlies the Abrahamskraal Formation. The Teekloof Formation does not underlie other units other than the younger Karoo dolerites and sills that relate to the emplacement of the Early Jurassic Drakensberg Group to the east. Outcrops and exposures of the Teekloof Formation range from Sutherland through the mountain escarpments between Fraserburg and Beaufort West. The northernmost localities of the Teekloof Formation are found by Loxton, Victoria West and Richmond.

<span class="mw-page-title-main">Drakensberg Group</span> Jurassic geological group in Lesotho and South Africa

The Drakensberg Group is a geological group named after the Drakensberg mountain range where in its uppermost sections the rocks are found. The Drakensberg Group lies over most of Lesotho and localities in the Eastern Cape, KwaZulu-Natal, and Free State provinces of South Africa. It forms part of the greater Karoo Igneous Province, which occurs over an extensive area of southern Africa.

References

  1. Rubidge, B.S. (2005). "Re-uniting lost continents – Fossil reptiles from the ancient Karoo and their wanderlust". South African Journal of Geology . 108 (1): 135–172. doi:10.2113/108.1.135.
  2. Selden, P.; and Nudds, J. (2011). "Karoo". Evolution of Fossil Ecosystems (2 ed.). Manson Publishing. pp. 104–122. ISBN   9781840761603.
  3. 1 2 3 Schlüter, Thomas (2008). Geological Atlas of Africa: With Notes on Stratigraphy, Tectonics, Economic Geology, Geohazards and Geosites of Each Country (2nd ed.). Springer. pp. 26–28. ISBN   9783540763734.
  4. 1 2 3 4 Catuneanu, O; Wopfner, H; Eriksson, P; Cairncross, B; Rubidge, B; Smith, R; Hancox, P (2005). "The Karoo basins of south-central Africa" (PDF). Journal of African Earth Sciences . 43 (1–3): 211. Bibcode:2005JAfES..43..211C. doi:10.1016/j.jafrearsci.2005.07.007.
  5. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 McCarthy, T., Rubridge, B. (2005). The Story of Earth and Life. pp. 161, 187–241. Struik Publishers, Cape Town
  6. 1 2 3 Geological map of South Africa, Lesotho and Swaziland (1970). Council for Geoscience, Geological Survey of South Africa.
  7. Hamilton, G.N.G. and Finlay, J.G. (1928). Outline of Geology for South African Students, Central News Agency Ltd., Johannesburg.
  8. Adelmann, D. and Kerstin Fiedler, (1996). "Sedimentary development of the Upper Ecca and Lower Beaufort Groups (Karoo Supergroup) in the Laingsburg subbasin (SW Karoo Basin, Cape Province/South Africa)" Archived 2005-09-03 at the Wayback Machine , Schriftenreihe der Deutschen Geologischen Gesellschaft, 1: 88–89, Bonn.
  9. Hancox, P. J. and Bruce S. Rubidge (1997). The role of fossils in interpreting the development of the Karoo basin, Palaeontologica Africana, 33: 41–54.
  10. 1 2 Compton, J.S. (2004).The Rocks and Mountains of Cape Town. p. 24-26. Double Storey Books, Cape Town.
  11. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Truswell, J.F. (1977). The Geological Evolution of South Africa. pp. 131–159. Purnell, Cape Town.
  12. Jackson, A.A., Stone, P. (2008). "Bedrock Geology UK South". p. 6-7. Keyworth, Nottingham: British Geological Survey.
  13. 1 2 Shone R.W. & Booth P.W.K. (2005). "The Cape Basin, South Africa: A review". Journal of African Earth Sciences. 43 (1–3): 196–210. Bibcode:2005JAfES..43..196S. doi:10.1016/j.jafrearsci.2005.07.013.
  14. Catuneanu O. (2004). "Retroarc foreland systems––evolution through time" (PDF). Journal of African Earth Sciences. 38 (3): 225–242. Bibcode:2004JAfES..38..225C. doi:10.1016/j.jafrearsci.2004.01.004.
  15. 1 2 3 4 Norman, N., Whitfield, G. (2006). Geological Journeys. pp. 28, 122. Struik Publishers, Cape Town.
  16. Baiyegunhi, Christopher; Liu, Kuiwu; Gwavava, Oswald (2017-08-16). "Geochemistry of sandstones and shales from the Ecca Group, Karoo Supergroup, in the Eastern Cape Province of South Africa: Implications for provenance, weathering and tectonic setting". Open Geosciences. 9 (1): 340–360. Bibcode:2017OGeo....9...28B. doi: 10.1515/geo-2017-0028 . ISSN   2391-5447.
  17. 1 2 Norman, Nick (2013). Geology off the beaten track; exploring South Africa's hidden treasures. Struik Nature. pp. 58–59. ISBN   978-1-43170-082-0.
  18. Knight, Will (28 July 2005). "Early dinosaurs crawled before they ran". New Scientist. Retrieved 23 June 2009.
  19. Footprint. "Rhebok Hiking Trail" (PDF). Retrieved 13 August 2006.
  20. Weishampel, David B; et al (2004). "Dinosaur distribution (Early Jurassic, Africa)." In: Weishampel, David B.; Dodson, Peter; and Osmólska, Halszka (eds.): The Dinosauria, 2nd, Berkeley: University of California Press. Pp. 535–536. ISBN   0-520-24209-2.
  21. Gohl, K.; Uenzelmann-Neben, G. (2001). "The crustal role of the Agulhas Plateau, southwest Indian Ocean: evidence for seismic profiling" (PDF). Geophysical Journal International. 144 (3): 632–646. Bibcode:2001GeoJI.144..632G. doi: 10.1046/j.1365-246x.2001.01368.x . Retrieved 13 November 2016.
  22. Gohl, K.; Uenzelmann-Neben, G.; Grobys, N. (2011). "Growth and dispersal of a southeast African Large Igenous Province" (PDF). South African Journal of Geology . 114 (3–4): 379–386. Bibcode:2011SAJG..114..379G. doi:10.2113/gssajg.114.3-4.379 . Retrieved 13 November 2016.
  23. Nyambe, Imasiku A.; Utting, John (1997). "Stratigraphy and palynostratigraphy, Karoo Supergroup (Permian and Triassic), mid-Zambezi Valley, southern Zambia". Journal of African Earth Sciences. 24 (4): 563. Bibcode:1997JAfES..24..563N. doi:10.1016/S0899-5362(97)00081-X.
  24. Bordy, Emese M.; Catuneanu, Octavian (2001). "Sedimentology of the upper Karoo fluvial strata in the Tuli Basin, South Africa". Journal of African Earth Sciences. 33 (3–4): 605. Bibcode:2001JAfES..33..605B. doi:10.1016/S0899-5362(01)00090-2.
  25. d'Engelbronner, E.R. (1996). "New palynological data from Karoo sediments, Mana Pools basin, northern Zimbabwe". Journal of African Earth Sciences. 23 (1): 17–30. Bibcode:1996JAfES..23...17D. doi:10.1016/S0899-5362(96)00049-8.
  26. Jones, D. L.; Duncan, R. A.; Briden, J. C.; Randall, D. E.; MacNiocaill, C. (2001). "Age of the Batoka basalts, northern Zimbabwe, and the duration of Karoo Large Igneous Province magmatism". Geochemistry, Geophysics, Geosystems. 2 (2): n/a. Bibcode:2001GGG.....2.1022J. doi: 10.1029/2000GC000110 .

Further reading