Glanosuchus

Last updated

Glanosuchus
Temporal range: Late Permian
Specimens of Glanosuchus.jpg
Skulls in side view, including that of the holotype (A-B)
Scientific classification OOjs UI icon edit-ltr.svg
Kingdom: Animalia
Phylum: Chordata
Clade: Synapsida
Clade: Therapsida
Clade: Therocephalia
Family: Scylacosauridae
Genus: Glanosuchus
Broom, 1904
Species:
G. macrops
Binomial name
Glanosuchus macrops
Broom, 1904
Synonyms [1]
Genus synonymy
  • Cynariognathus
    Broom, 1931
  • Walteria
    Brink & Kitching, 1951
  • Ptomalestes
    Boonstra, 1954
  • Karroowalteria
    Kuhn, 1958
  • Crapartinella
    Mendrez, 1975
Species synonymy
  • Pristerognathus platyrhinus
    Broom, 1912
  • Cynariognathus platyrhinus
    Broom, 1931
  • Walteria skinneri
    Brink & Kitching, 1951
  • Cynariognathus paucioridens
    Boonstra, 1954
  • Ptomalestes avidus
    Boonstra, 1954
  • Alopecognathus skinneri
    Boonstra, 1969
  • Crapartinella croucheri
    Mendrez, 1975

Glanosuchus is a genus of scylacosaurid therocephalian from the Late Permian of South Africa. The type species G. macrops was named by Robert Broom in 1904. Glanosuchus had a middle ear structure that was intermediate between that of early therapsids and mammals. Ridges in the nasal cavity of Glanosuchus suggest it had an at least partially endothermic metabolism similar to modern mammals.

Contents

Description

Illustration of the skull from 1904 Glanosuchus macrops Broom.jpg
Illustration of the skull from 1904

Glanosuchus macrops was first described in 1904 by South African paleontologist Robert Broom, who named the genus and species on the basis of a nearly complete holotype skull. The skull has been distorted during fossilization and the bone is indistinguishable from the surrounding matrix in some parts. In illustrating the holotype, Broom chose to reconstruct the skull of the species rather than draw the actual specimen. [2]

The skull of Glanosuchus is about 12 inches (30 cm) long. [2] Glanosuchus probably grew to around 6 feet (1.8 m) in length. [3] Like other early therocephalians, Glanosuchus had a long, deep snout and large canine teeth. The incisor teeth at the front of the upper jaw are also large and blade-like. There are six incisors on either side of the upper jaw, the furthest one being noticeably smaller than the rest. Five small pointed teeth are located behind each canine. The snout is wider in the front than it is behind, a usual feature among therapsids but present in several other related therocephalians. The nostrils are positioned at the tip of the snout and directed forward. [2]

Paleobiology

Hearing

Glanosuchus represents an early stage in the development of the mammalian middle ear. Modern mammals have three bones in the middle ear (the malleus, incus, and stapes) that transfer sound energy from the eardrum to the fluid of the inner ear. The malleus and incus of mammals developed from the articular and quadrate of early therapsids. Studies of the bones of Glanosuchus show that it had a very thin plate of bone that acted as an eardrum, receiving sounds and transferring them to a small air-filled cavity. The stapes and vestibular foramen (the hole that connects the middle and inner ears) are preserved in one specimen of Glanosuchus that was examined by grinding away cross sections of the skull. The anular ligament, a ring-like structure that forms a seal between the end of the stapes and the rim of the vestibular foramen, was probably held in place by cartilage. The transfer of sound between the thin bony plate and the vestibular foramen in Glanosuchus was not as effective as it is in mammals, meaning that the animal had a less acute sense of hearing. [4]

Metabolism

Skulls shown from above, including that of the holotype (C) Specimens of Glanosuchus from above.jpg
Skulls shown from above, including that of the holotype (C)

Glanosuchus may have been one of the first therapsids to achieve endothermy, or warm-bloodedness. Endothermy is seen today in mammals, the only living group of therapsids. Reptiles, the closest living relatives of mammals, are cold-blooded ectotherms with lower metabolic rates. Endothermic animals likely evolved from more primitive ectothermic synapsids sometime in the Permian or Triassic. [5]

While fur, commonly accepted as a clear indication of endothermy, has not been found in non-mammalian therapsids, [6] some skeletal features preserved in therapsid remains may be an indication of the metabolic rates of these animals. Modern mammals possess maxilloturbinates, which are a type of concha (shelf of bone) in the nasal cavity that collect moisture from inhaled air. As endotherms, mammals must breathe rapidly to supply enough oxygen for their high metabolisms. As oxygen passes into and out of the nasal cavity, it dries out the surrounding tissue. Water from inhaled air condenses on the maxilloturbinates, preventing the drying out of the nasal cavity and allowing mammals to inhale enough oxygen to support their high metabolisms. [3]

Reptiles and more primitive synapsids have conchae, but these plates of bone are involved in sensing smell rather than preventing desiccation. [5] While the maxilloturbinates of mammals are located in the path of airflow to collect moisture, sensory cochae in both mammals and reptiles are positioned farther back and above the nasal passage, away from the flow of air. [6] Glanosuchus has ridges positioned low in the nasal cavity, indicating that it had maxilloturbinates that were in the direct path of airflow. The maxilloturbinates may not have been preserved because they were either very thin or cartilaginous. The possibility has also been raised that these ridges are associated with an olfactory epithelium rather than turbinates. [7] Nonetheless, the possible presence of maxilloturbinates suggests that Glanosuchus may have been able to rapidly breathe without drying out the nasal passage, and therefore could have been an endotherm. [3] [5] [7]

Glanosuchus is the earliest known therapsid to possess maxilloturbinates, but it shares features with reptiles that suggest it was not fully endothermic. Choanae, two holes in the palate that connect the nasal cavity to the mouth, are positioned far forward in reptiles, early synapsids, and Glanosuchus. [5] This shortens the nasal cavity, thereby reducing the ability to humidify incoming air. [3] The choanae migrated farther back in the palate later in therocephalian evolution, suggesting that advanced forms like Bauria had high metabolic rates similar to those of mammals. As the choanae moved farther back, a secondary palate expanded in front of it. This expansion occurred in both therocephalians and the related cynodonts, indicating that the two groups were convergently acquiring mammalian characteristics in the Permian and Triassic. [8] Although therocephalians died out by the Middle Triassic, cynodonts continued to diversify, giving rise to fully endothermic mammals in the Late Triassic. [5]

Related Research Articles

<span class="mw-page-title-main">Synapsid</span> Clade of tetrapods

Synapsids are one of the two major groups of animals that evolved from basal amniotes, the other being the sauropsids, the group that includes reptiles and birds. The group includes mammals and every animal more closely related to mammals than to sauropsids. Unlike other amniotes, synapsids have a single temporal fenestra, an opening low in the skull roof behind each eye orbit, leaving a bony arch beneath each; this accounts for their name. The distinctive temporal fenestra developed about 318 million years ago during the Late Carboniferous period, when synapsids and sauropsids diverged, but was subsequently merged with the orbit in early mammals.

<span class="mw-page-title-main">Therapsid</span> Clade of tetrapods including mammals

Therapsida is a major group of eupelycosaurian synapsids that includes mammals, their ancestors and relatives. Many of the traits today seen as unique to mammals had their origin within early therapsids, including limbs that were oriented more underneath the body, as opposed to the sprawling posture of many reptiles and salamanders.

<span class="mw-page-title-main">Cynodont</span> Clade of therapsids

Cynodonts are eutheriodont therapsids belonging to the clade Cynodontia that first appeared in the Late Permian, and extensively diversified after the Permian–Triassic extinction event. Cynodonts occupied a variety of ecological niches, both as carnivores and as herbivores. Mammals are cynodonts, as are their extinct ancestors and close relatives, having evolved from advanced probainognathian cynodonts during the Late Triassic. All other cynodont lines went extinct, with the last known non-mammalian cynodont group, the Tritylodontidae, having its youngest records in the Early Cretaceous.

<i>Thrinaxodon</i> Extinct genus of cynodonts of Early Triassic South Africa

Thrinaxodon is an extinct genus of cynodonts, including the species T. liorhinus which lived in what are now South Africa and Antarctica during the Early Triassic. Thrinaxodon lived just after the Permian–Triassic mass extinction event, its survival during the extinction may have been due to its burrowing habits.

<i>Galesaurus</i> Extinct genus of cynodonts from the Triassic of South Africa

Galesaurus is an extinct genus of carnivorous cynodont therapsid that lived between the Induan and the Olenekian stages of the Early Triassic in what is now South Africa. It was incorrectly classified as a dinosaur by Sir Richard Owen in 1859.

<span class="mw-page-title-main">Gorgonopsia</span> Extinct group of saber-toothed therapsids from the Permian

Gorgonopsia is an extinct clade of sabre-toothed therapsids from the Middle to Upper Permian roughly 265 to 252 million years ago. They are characterised by a long and narrow skull, as well as elongated upper and sometimes lower canine teeth and incisors which were likely used as slashing and stabbing weapons. Postcanine teeth are generally reduced or absent. For hunting large prey, they possibly used a bite-and-retreat tactic, ambushing and taking a debilitating bite out of the target, and following it at a safe distance before its injuries exhausted it, whereupon the gorgonopsian would grapple the animal and deliver a killing bite. They would have had an exorbitant gape, possibly in excess of 90°, without having to unhinge the jaw.

<i>Ericiolacerta</i> Extinct genus of therapsid from the #REDIRECT early Triassic

Ericiolacerta is an extinct genus of small therocephalian therapsids from the early Triassic of South Africa and Antarctica. Ericiolacerta, meaning "hedgehog lizard", was named by D.M.S. Watson in 1931. The species E. parva is known from the holotype specimen which consists of a nearly complete skeleton found in the Lystrosaurus Assemblage Zone within the Katberg Formation of the Beaufort Group in South Africa, and from a partial jaw found in the Lower Triassic Fremouw Formation in Antarctica. Ericiolacerta was around 20 centimetres (7.9 in) in length, with long limbs and relatively small teeth. It probably ate insects and other small invertebrates. The therocephalians – therapsids with mammal-like heads – were abundant in Permian times, but only a few made it into the Triassic. Ericiolacerta was one of those. It is possible that they gave rise to the cynodonts, the only therapsid group to survive into post-Triassic times. Cynodonts gave rise to mammals.

<span class="mw-page-title-main">Therocephalia</span> Extinct order of therapsids

Therocephalia is an extinct clade of eutheriodont therapsids from the Permian and Triassic. The therocephalians ("beast-heads") are named after their large skulls, which, along with the structure of their teeth, suggest that they were carnivores. Like other non-mammalian synapsids, therocephalians were once described as "mammal-like reptiles". Therocephalia is the group most closely related to the cynodonts, which gave rise to the mammals. This relationship takes evidence in a variety of skeletal features.

<span class="mw-page-title-main">Theriodontia</span> Clade of therapsids

The theriodonts are a major group of therapsids which appeared during the Middle Permian and which includes the gorgonopsians and the eutheriodonts, itself including the therocephalians and the cynodonts.

<i>Euchambersia</i> Extinct genus of therapsid from Late Permian South Africa

Euchambersia is an extinct genus of therocephalian therapsids that lived during the Late Permian in what is now South Africa and China. The genus contains two species. The type species E. mirabilis was named by paleontologist Robert Broom in 1931 from a skull missing the lower jaw. A second skull, belonging to a probably immature individual, was later described. In 2022, a second species, E. liuyudongi, was named by Jun Liu and Fernando Abdala from a well-preserved skull. It is a member of the family Akidnognathidae, which historically has also been referred by as the synonymous Euchambersiidae.

<i>Bauria</i> Genus of therapsids from the Earlt Triassic of South Africa

Bauria is an extinct genus of the suborder Therocephalia that existed during the Early and MiddleTriassic period, around 246-251 million years ago. It belonged to the family Bauriidae. Bauria was probably a carnivore or insectivore. It lived in South Africa, specifically in the Burgersdorp Formation in South Africa.

<i>Moschorhinus</i> Genus of synapsid from late Permian and early Triassic South Africa

Moschorhinus is an extinct genus of therocephalian in the family Akidnognathidae with only one species: M. kitchingi. It was a carnivorous synapsid which has been found in the Late Permian to Early Triassic of the South African Karoo Supergroup. It was a large carnivore, reaching 1.5 m (4.9 ft) in total body length with the largest skull comparable to that of a lion in size. It had a broad, blunt snout which bore long, straight canines. It appears to have replaced the gorgonopsids ecologically, and hunted much like a big cat. While most abundant in the Late Permian, it survived a little after the Permian Extinction, though these Triassic individuals had stunted growth.

<i>Lycosuchus</i> Extinct genus of therapsids from the middle Permian of South Africa

Lycosuchus is an extinct genus of carnivorous therocephalians which lived in the Middle Permian 265—260 Ma existing for approximately 5 million years. As a member of the Lycosuchidae, the genus represents one of the earliest diverging therocephalians. The type species Lycosuchus vanderrieti is known from a handful of well-preserved specimens featuring the cranium and lower jaw; the holotype US D173 housed at the University of Stellenbosch, South Africa, is a near complete occluded skull. Specimen MB.R. 995, housed at the Museum für Naturkunde Berlin, Germany, consists of a near complete and isolated lower jaw, along with a partial snout and brain case. With the help of μCT data, Pusch et al (2020) described the endocranial anatomy of Lycosuchus vanderrieti.

<i>Theriognathus</i> Extinct genus of therapsids from late Permian South Africa and Tanzania

Theriognathus is an extinct genus of therocephalian therapsid belonging to the family Whaitsiidae, known from fossils from South Africa, Zambia, and Tanzania. Theriognathus has been dated as existing during the Late Permian. Although Theriognathus means mammal jaw, the lower jaw is actually made up of several bones as seen in modern reptiles, in contrast to mammals. Theriognathus displayed many different reptilian and mammalian characteristics. For example, Theriognathus had canine teeth like mammals, and a secondary palate, multiple bones in the mandible, and a typical reptilian jaw joint, all characteristics of reptiles. It is speculated that Theriognathus was either carnivorous or omnivorous based on its teeth, and was suited to hunting small prey in undergrowth. This synapsid adopted a sleek profile of a mammalian predator, with a narrow snout and around 1 meter long. Theriognathus is represented by 56 specimens in the fossil record.

<i>Platycraniellus</i> Extinct genus of cynodonts from the early Triassic of South Africa

Platycraniellus is an extinct genus of carnivorous cynodonts from the Early Triassic. It is known from the Lystrosaurus Assemblage Zone of the Normandien Formation in South Africa. P. elegans is the only species in this genus based on the holotype specimen from the Ditsong National Museum of Natural History in Pretoria, South Africa. Due to limited fossil records for study, Platycraniellus has only been briefly described a handful of times.

<i>Scymnosaurus</i> Extinct genus of therapsids from middle Permian South Africa

Scymnosaurus is an extinct genus of therocephalian therapsids, first described by Robert Broom in 1903. There are three species that still take the name Scymnosaurus, S. ferox, S. watsoni and S. major, with a fourth, S. warreni, now identified as Moschorhinus warreni. Each of these have now been reclassified into Lycosuchidae incertae sedis.

<i>Herpetoskylax</i> Extinct genus of therapsids

Herpetoskylax is an extinct genus of biarmosuchians which existed in South Africa. The type species is Herpetoskylax hopsoni. It lived in the Late Permian Period.

<span class="mw-page-title-main">Eutheriodontia</span> Clade of therapsids

Eutheriodontia is a clade of therapsids which appear during the Middle Permian and which includes therocephalians and cynodonts, this latter group including mammals and related forms.

<i>Karenites</i> Genus of therapsids from the Late Permian of Russia

Karenites is an extinct genus of therocephalian therapsids from the Late Permian of Russia. The only species is Karenites ornamentatus, named in 1995. Several fossil specimens are known from the town of Kotelnich in Kirov Oblast.

<i>Thliptosaurus</i> Extinct genus of dicynodonts

Thliptosaurus is an extinct genus of small kingoriid dicynodont from the latest Permian period of the Karoo Basin in KwaZulu-Natal, South Africa. It contains the type and only known species T. imperforatus. Thliptosaurus is from the upper Daptocephalus Assemblage Zone, making it one of the youngest Permian dicynodonts known, living just prior to the Permian mass extinction. It also represents one of the few small bodied dicynodonts to exist at this time, when most other dicynodonts had large body sizes and many small dicynodonts had gone extinct. The unexpected discovery of Thliptosaurus in a region of the Karoo outside of the historically sampled localities suggests that it may have been part of an endemic local fauna not found in these historic sites. Such under-sampled localities may contain 'hidden diversities' of Permian faunas that are unknown from traditional samples. Thliptosaurus is also unusual for dicynodonts as it lacks a pineal foramen, suggesting that it played a much less important role in thermoregulation than it did for other dicynodonts.

References

  1. Kammerer, Christian E. (2023). "Revision of the Scylacosauridae (Therapsida: Therocephalia)". Palaeontologia africana. 56: 51–87. ISSN   2410-4418.
  2. 1 2 3 Broom, R. (1904). "On two new therocephalian reptiles (Glanosuchus macrops and Pristerognathus baini)" (PDF). Transactions of the South African Philosophical Society. 15: 85–88. doi:10.1080/21560382.1904.9626433.
  3. 1 2 3 4 Zimmer, C. (1994). "The Importance of Noses". Discover. 15 (8).
  4. Maier, W.; Heever, J. van den (2002). "Middle ear structures in the Permian Glanosuchus sp. (Therocephalia, Therapsida), based on thin sections". Fossil Record. 5 (1): 309–318. doi: 10.1002/mmng.20020050119 .
  5. 1 2 3 4 5 Hillenius, W.J. (1994). "Turbinates in therapsids: Evidence for Late Permian origins of mammalian endothermy". Evolution. 48 (2): 207–229. doi:10.2307/2410089. JSTOR   2410089. PMID   28568303.
  6. 1 2 Ruben, J.A.; Jones, T.D. (2000). "Selective factors associated with the origin of fur and feathers". American Zoologist. 40 (4): 585–596. doi: 10.1093/icb/40.4.585 .
  7. 1 2 Kemp, T.S. (2006). "The origin of mammalian endothermy: a paradigm for the evolution of complex biological structure". Zoological Journal of the Linnean Society. 147 (4): 473–488. doi: 10.1111/j.1096-3642.2006.00226.x .
  8. Maier, W.; Heever, J. van den; Durand, F. (1996). "New therapsid specimens and the origin of the secondary hard and soft palate of mammals". Journal of Zoological Systematics and Evolutionary Research. 34 (1): 9–19. doi: 10.1111/j.1439-0469.1996.tb00805.x .