Bokkeveld Group

Last updated
Bokkeveld Group
Stratigraphic range: Early-Middle Devonian
~419–382  Ma
Type Geological group
Sub-units Gydo, Gamka, Voorstehoek, Hex River, Tra-Tra, Boplaas, Waboomberg, Wuppertal, Klipbokkop, Osberg & Karoopoort Formations
Underlies Witteberg Group
Overlies Table Mountain Group
Lithology
Primary Sandstone, mudstone, siltstone, shale, and conglomerates
Other Calcite
Location
Region Western & Eastern Cape
CountryFlag of South Africa.svg  South Africa
Type section
Named forBokkeveld mountains
Cederberg geology.jpg
Schematic diagram of a west-east (left - right) geological cross section through the Cedarberg portion of the Cape Fold Belt (South Africa). The rock layers represent the three main subdivisions of the Cape Supergroup. The Bokkeveld Group rocks are represented by the pale purple layer.

The Bokkeveld Group is the second of the three main subdivisions of the Cape Supergroup in South Africa. It overlies the Table Mountain Group and underlies the Witteberg Group. The Bokkeveld Group rocks are considered to range between Lower Devonian (Lochkovian) to Middle Devonian (Givetian) in age. [1] [2]

Contents

Background

The Cape Supergroup rocks were deposited in a purely marine setting, within a 1,300 kilometres (810 mi) wide passive margin basin known as the Cape Basin. The rocks were deposited over a 170-million-year period ranging from approximately 485 Ma (Tremadocian) to the Early Carboniferous (about 330 Ma; late Mississippian). Up to 10 kilometres (33,000 ft) of strata were preserved throughout. The Cape Supergroup rocks later underwent deformation during the Cape orogeny, in which the rocks were folded and thrust upwards. The Cape orogeny formed the Cape Fold Belt and the mountains that range along the Cape and the southern parts of South Africa. [3] An additional geological formation, the Msikaba Formation, found north of Port St. Johns in the Eastern Cape is considered to correlate with the Witteberg Group of the Cape Supergroup. [4]

Geographic extent

Bokkeveld Group outcrops and exposures range from the Breede River Valley in the west to Port Alfred near Grahamstown in the east. The group displays lateral continuity throughout the length of the Cape Fold Belt. The Msikaba Formation rocks appear north-northeast of Port St. Johns in the Eastern Cape.

Stratigraphic units

The Bokkeveld Group is subdivided into three subgroups: the Ceres Subgroup and Bidouw Subgroup that are found West of 24ºE, and the Traka Subgroup found East of 24ºE. [5] The Ceres Subgroup is found throughout the extent of the lower Bokkeveld Group exposures. The Bokkeveld Group contains five complete coarsening-upward cycles and is arranged into three distinctive facies arrangements represented by the subgroups. The geological formations are also distinguished by their sedimentology of alternating mudstone/siltstone and sandstones. [6] [7] [8] [9] [1] The Bokkeveld Group subgroups and their respective geological formations are listed below (from oldest to youngest):

Ceres Subgroup:

Bidouw Subgroup (West of 24ºE):

Traka Subgroup (East of 24ºE):

Paleontology

The bulk of the fossils found in the Cape Supergroup are eroded fragments of benthic invertebrate Malvinokaffric fauna, particularly that of various brachiopods such as Australocoelia, [11] Australospirifer, and chonetids. Crinoids are also found, although their dis-articulated ossicles are more common, as are trace fossils such as worm burrows and feeding trails left by other invertebrates. Rarer are fossils of trilobites, bivalves, cephalopods, gastropods, ophiuroids, hyoliths, echinoids, echinoderms, conulariids, cricoconarids, and corals. [12] [13] [14] [15] [16] [17]

In the upper Bidouw and Traka Subgroups, plant and trace fossils are more common than invertebrate fossils. Lycopods and trace fossils of Spirophyton have been recovered. Rare bony fish fossils have also been found, mainly of placoderm fishes, although placoderm fish are mainly known from rocks of the overlying Witteberg Group.

Related Research Articles

<span class="mw-page-title-main">Karoo Supergroup</span> Widespread Mesozoic stratigraphic unit in southern Africa

The Karoo Supergroup is the most widespread stratigraphic unit in Africa south of the Kalahari Desert. The supergroup consists of a sequence of units, mostly of nonmarine origin, deposited between the Late Carboniferous and Early Jurassic, a period of about 120 million years.

<span class="mw-page-title-main">Beaufort Group</span> Third of the main subdivisions of the Karoo Supergroup in South Africa

The Beaufort Group is the third of the main subdivisions of the Karoo Supergroup in South Africa. It is composed of a lower Adelaide Subgroup and an upper Tarkastad Subgroup. It follows conformably after the Ecca Group and unconformably underlies the Stormberg Group. Based on stratigraphic position, lithostratigraphic and biostratigraphic correlations, palynological analyses, and other means of geological dating, the Beaufort Group rocks are considered to range between Middle Permian (Wordian) to Early Triassic (Anisian) in age.

<span class="mw-page-title-main">Cape Fold Belt</span> Late Paleozoic fold and thrust belt in southwestern South Africa

The Cape Fold Belt is a fold and thrust belt of late Paleozoic age, which affected the sequence of sedimentary rock layers of the Cape Supergroup in the southwestern corner of South Africa. It was originally continuous with the Ventana Mountains near Bahía Blanca in Argentina, the Pensacola Mountains, the Ellsworth Mountains and the Hunter-Bowen orogeny in eastern Australia. The rocks involved are generally sandstones and shales, with the shales persisting in the valley floors while the erosion resistant sandstones form the parallel ranges, the Cape Fold Mountains, which reach a maximum height of 2325 m at Seweweekspoortpiek.

<i>Tapinocephalus</i> Assemblage Zone

The Tapinocephalus Assemblage Zone is a tetrapod assemblage zone or biozone which correlates to the middle Abrahamskraal Formation, Adelaide Subgroup of the Beaufort Group, a fossiliferous and geologically important geological Group of the Karoo Supergroup in South Africa. The thickest outcrops, reaching approximately 2,000 metres (6,600 ft), occur from Merweville and Leeu-Gamka in its southernmost exposures, from Sutherland through to Beaufort West where outcrops start to only be found in the south-east, north of Oudshoorn and Willowmore, reaching up to areas south of Graaff-Reinet. Its northernmost exposures occur around the towns Fraserburg and Victoria West. The Tapinocephalus Assemblage Zone is the second biozone of the Beaufort Group.

<i>Lystrosaurus</i> Assemblage Zone

The Lystrosaurus Assemblage Zone is a tetrapod assemblage zone or biozone which correlates to the upper Adelaide and lower Tarkastad Subgroups of the Beaufort Group, a fossiliferous and geologically important geological Group of the Karoo Supergroup in South Africa. This biozone has outcrops in the south central Eastern Cape and in the southern and northeastern Free State. The Lystrosaurus Assemblage Zone is one of eight biozones found in the Beaufort Group, and is considered to be Early Triassic in age.

<i>Tropidostoma</i> Assemblage Zone

The Tropidostoma Assemblage Zone is a tetrapod assemblage zone or biozone which correlates to the lower Teekloof Formation, Adelaide Subgroup of the Beaufort Group, a fossiliferous and geologically important geological Group of the Karoo Supergroup in South Africa. The thickest outcrops, reaching approximately 240 metres (790 ft), occur from east of Sutherland through to Beaufort West and Victoria West, to areas south of Graaff-Reinet. Its northernmost exposures occur west/north-west of Colesberg. The Tropidostoma Assemblage Zone is the fourth biozone of the Beaufort Group.

<i>Eodicynodon</i> Assemblage Zone

The Eodicynodon Assemblage Zone is a tetrapod assemblage zone or biozone which correlates to the Abrahamskraal Formation, Adelaide Subgroup of the Beaufort Group, a fossiliferous and geologically important geological Group of the Karoo Supergroup in South Africa. The thickest outcrops, reaching approximately 620 metres (2,030 ft), occur south-east of Sutherland, north of Prince Albert, and south-east of Beaufort West. The Eodicynodon Assemblage Zone is the lowermost biozone of the Beaufort Group.

<span class="mw-page-title-main">Ecca Group</span> Second of the main subdivisions of the Karoo Supergroup of geological strata in southern Africa

The Ecca Group is the second of the main subdivisions of the Karoo Supergroup of geological strata in southern Africa. It mainly follows conformably after the Dwyka Group in some sections, but in some localities overlying unconformably over much older basement rocks. It underlies the Beaufort Group in all known outcrops and exposures. Based on stratigraphic position, lithostratigraphic correlation, palynological analyses, and other means of geological dating, the Ecca Group ranges between Early to earliest Middle Permian in age.

<span class="mw-page-title-main">Table Mountain Sandstone</span> Group of rock formations within the Cape Supergroup sequence of rocks

Table Mountain Sandstone (TMS) is a group of rock formations within the Cape Supergroup sequence of rocks. Although the term "Table Mountain Sandstone" is still widely used in common parlance, the term TMS is no longer formally recognized; the correct name is the "Peninsula Formation Sandstone", which is part of the Table Mountain Group. The designation "Table Mountain Sandstone" will, however, in deference to the title, continue to be used in the rest of this article. The name is derived from the famous landmark in Cape Town, Table Mountain.

The Devonian Mahantango Formation is a mapped bedrock unit in Pennsylvania, West Virginia, and Maryland. It is named for the North branch of the Mahantango Creek in Perry and Juniata counties in Pennsylvania. It is a member of the Hamilton Group, along with the underlying the Marcellus Formation Shale. South of Tuscarora Mountain in south central Pennsylvania, the lower members of this unit were also mapped as the Montebello Formation. Details of the type section and of stratigraphic nomenclature for this unit as used by the U.S. Geological Survey are available on-line at the National Geologic Map Database.

<span class="mw-page-title-main">Molteno Formation</span> Triassic geological formation in the Stormberg Group in Lesotho and South Africa

The Molteno Formation is a geological formation found in several localities in Lesotho and South Africa. It lies mainly south of Maseru, near Burgersdorp, Aliwal North, Dordrecht, Molteno, and Elliot. It extends as far north as Matatiele in the Eastern Cape. The formation's localities lie along the Drakensberg Mountains in Kwazulu-Natal, and near Ladybrand in the Free State of South Africa. The Molteno Formation is the lowermost of the three formations in the Stormberg Group of the greater Karoo Supergroup. The Molteno Formation represents the initial phase of preserved sedimentation of the Stormberg Group.

<span class="mw-page-title-main">Enon Formation</span> Jurassic-Cretaceous geological formation in the Uitenhage Group of South Africa

The Enon Formation is a geological formation found in the Eastern and Western Cape provinces in South Africa. It is the lowermost of the four formations found within the Uitenhage Group of the Algoa Basin, its type locality, where it has been measured at a maximum thickness of 480 metres (1,570 ft). Discontinuous outcrops are also found in the Worcester-Pletmos and Oudshoorn-Gamtoos Basins, including isolated occurrences in the Haasvlakte, Jubilee, and Soutpansvlakte Basins near the small town Bredasdorp.

<span class="mw-page-title-main">Stormberg Group</span> Triassic/Jurassic geological group in the Karoo Supergroup in South Africa

The Stormberg Group is one of the four geological groups that comprises the Karoo Supergroup in South Africa. It is the uppermost geological group representing the final phase of preserved sedimentation of the Karoo Basin. The Stormberg Group rocks are considered to range between Lower Triassic (Olenekian) to Lower Jurassic (Pliensbachian) in age. These estimates are based on means of geological dating including stratigraphic position, lithostratigraphic and biostratigraphic correlations, and palynological analyses.

Dutoitia is a genus of Devonian rhyniophyte, named after the renowned South African geologist Alex du Toit. It is one of the earliest plants from Gondwana to colonize land. Its fossils were preserved in fine mudstones of the 400-million-year-old Bokkeveld and Witteberg Groups of South Africa. This erect, gracile plant is less than 10 cm high and very simple in structure. Its diminutive stems, which are devoid of leaflike appendages, branch in two and end in club- or cup-shaped sporangia, occasionally containing its reproductive spores. Stomata are present in the cuticle of their stems for gas exchange, and primitive cells inside the stems transported water from the roots to the aerial parts of the plant. Three species are recognized, D. pulchra Hoeg 1930, D. alfreda Plumstead 1967 and D. maraisia Plumstead 1967.

The Wentnor Group is a group of rocks associated with the Longmyndian Supergroup of Precambrian age in present-day Wales, U.K.

The Stretton Group is a group of rocks associated with the Longmyndian Supergroup of Ediacaran age, in Shropshire, England. The rocks are located within the tract between two elements of the Welsh Borderland Fault System, the Church Stretton Fault and the Pontesford-Linley Lineament.

<span class="mw-page-title-main">Balfour Formation</span> Geological formation in the Beaufort Group of South Africa

The Balfour Formation is a geological formation that is found in the Beaufort Group, a major geological group that forms part of the greater Karoo Supergroup in South Africa. The Balfour Formation is the uppermost formation of the Adelaide Subgroup which contains all the Late Permian-aged biozones of the Beaufort Group. Outcrops and exposures of the Balfour Formation are found from east of 24 degrees in the highest mountainous escarpments between Beaufort West and Fraserburg, but most notably in the Winterberg and Sneeuberg mountain ranges near Cradock, the Baviaanskloof river valley, Graaff-Reniet and Nieu Bethesda in the Eastern Cape, and in the southern Free State province.

<span class="mw-page-title-main">Katberg Formation</span> Geological formation in the Beaufort Group of the Karoo Supergroup in South Africa

The Katberg Formation is a geological formation that is found in the Beaufort Group, a major geological group that forms part of the greater Karoo Supergroup in South Africa. The Katberg Formation is the lowermost geological formation of the Tarkastad Subgroup which contains the Lower to Middle Triassic-aged rocks of the Beaufort Group. Outcrops and exposures of the Katberg Formation are found east of 24 degrees on wards and north of Graaff-Reniet, Nieu Bethesda, Cradock, Fort Beaufort, Queensdown, and East London in the south, and ranges as far north as Harrismith in deposits that form a ring around the Drakensberg mountain ranges.

<span class="mw-page-title-main">Middleton Formation</span> Late middle Permian geological formation in the Eastern Cape

The Middleton Formation is a geological formation that extends through the Northern Cape, Western Cape, and Eastern Cape provinces of South Africa. It overlies the lower Abrahamskraal Formation, and is the eastern correlate, East of 24ºE, of the Teekloof Formation. Outcrops and exposures of the Middleton Formation range from Graaff-Reinet in the Eastern Cape onwards. The Middleton Formation's type locality lies near the small hamlet, Middleton, approximately 25 km south of Cookhouse. Other exposures lie in hillsides along the Great Fish River in the Eastern Cape. The Middleton Formation forms part of the Adelaide Subgroup of the Beaufort Group, which itself forms part of the Karoo Supergroup.

<span class="mw-page-title-main">Teekloof Formation</span> Late Permian geological formation that forms part of the Beaufort Group of South Africa

The Teekloof Formation is a geological formation that forms part of the Beaufort Group, one of the five geological groups that comprises the Karoo Supergroup in South Africa. The Teekloof Formation is the uppermost formation of Adelaide Subgroup deposits West of 24ºE and contains Middle to Late Permian-aged deposits and four biozones of the Beaufort Group. It overlies the Abrahamskraal Formation. The Teekloof Formation does not underlie other units other than the younger Karoo dolerites and sills that relate to the emplacement of the Early Jurassic Drakensberg Group to the east. Outcrops and exposures of the Teekloof Formation range from Sutherland through the mountain escarpments between Fraserburg and Beaufort West. The northernmost localities of the Teekloof Formation are found by Loxton, Victoria West and Richmond.

References

  1. 1 2 Tankard, A. J.; Martin, Martin; Eriksson, K. A.; Hobday, D. K.; Hunter, D. R.; Minter, W. E. L. (2012-12-06). Crustal Evolution of Southern Africa: 3.8 Billion Years of Earth History. Springer Science & Business Media. ISBN   9781461381471.
  2. C.R.Penn-Clarke, B.S.Rubidge, Z.A.Jinnah (2018). "Two hundred years of palaeontological discovery: Review of research on the Early to Middle Devonian Bokkeveld Group (Cape Supergroup) of South Africa". Journal of African Earth Sciences. 137: 157–178. Bibcode:2018JAfES.137..157P. doi:10.1016/j.jafrearsci.2017.10.011.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  3. Blewett, Scarlett C. J.; Phillips, David (2016), Linol, Bastien; de Wit, Maarten J. (eds.), "An Overview of Cape Fold Belt Geochronology: Implications for Sediment Provenance and the Timing of Orogenesis", Origin and Evolution of the Cape Mountains and Karoo Basin, Regional Geology Reviews, Springer International Publishing, pp. 45–55, doi:10.1007/978-3-319-40859-0_5, ISBN   9783319408590
  4. Truswell, J.F., 1977. The geological evolution of South Africa. Purnell.
  5. Jinnah, Zubair A.; Rubidge, Bruce S.; Penn-Clarke, Cameron R. (2018-09-01). "High-Paleolatitude Environmental Change During the Early To Middle Devonian: Insights from Emsian–Eifelian (Lower–Middle Devonian) Siliciclastic Depositional Systems of the Ceres Subgroup (Bokkeveld Group) of South Africa". Journal of Sedimentary Research. 88 (9): 1040–1075. Bibcode:2018JSedR..88.1040P. doi:10.2110/jsr.2018.53. ISSN   1527-1404. S2CID   134213359.
  6. Reid, M., Bordy, E.M. and Taylor, W., 2015. (2015-04-09). "Taphonomy and sedimentology of an echinoderm obrution bed in the Lower Devonian Voorstehoek formation (Bokkeveld Group, Cape Supergroup) of South Africa. Journal of African Earth Sciences, 110, pp.135-149". doi:10.1016/j.jafrearsci.2015.04.009.{{cite journal}}: Cite journal requires |journal= (help)CS1 maint: multiple names: authors list (link) CS1 maint: numeric names: authors list (link)
  7. Reid, Mhairi (2017). "Taphonomy, palaeoecology and taxonomy of an ophiuroid-stylophoran obrution deposit from the Lower Devonian Bokkeveld Group, South Africa".{{cite journal}}: Cite journal requires |journal= (help)
  8. Ruta, Marcello; Theron, Johannes (1997-03-26). "Two Devonian mitrates from South Africa". Palaeontology. 40: 201–243. ISSN   0031-0239.
  9. Shone, R.W. and Booth, P.W.K., 2005. "The Cape Basin, South Africa: A review. Journal of African Earth Sciences, 43(1-3), pp.196-210". doi:10.1016/j.jafrearsci.2005.07.013.{{cite journal}}: Cite journal requires |journal= (help)CS1 maint: multiple names: authors list (link) CS1 maint: numeric names: authors list (link)
  10. Barwis, John H.; Tankard, Anthony J. (1982-09-01). "Wave-dominated deltaic sedimentation in the Devonian Bokkeveld Basin of South Africa". Journal of Sedimentary Research. 52 (3): 959–974. doi:10.1306/212F809E-2B24-11D7-8648000102C1865D. ISSN   1527-1404.
  11. Boucot, A.J. and Gill, E.D., 1956. Australocoelia, a new Lower Devonian brachiopod from South Africa, South America, and Australia. Journal of Paleontology, pp.1173-1178.
  12. Almond, J.E., 2005. PALAEONTOLOGICAL IMPACT ASSESSMENT: Exceptional fossil starfish bed, Prince Albert District, Western Cape. John E. Almond  (Natura Viva cc, Cape Town) and Derek Ohland (Iziko Museums, Cape Town). January 2005.
  13. Almond, J.E., 2013. PALAEONTOLOGICAL SPECIALIST STUDY: FIELD ASSESSMENT. Expansion of an existing Borrow Pit in the Prince Albert townlands, Prince Albert District, Western Cape. John E. Almond  (Natura Viva cc, Cape Town). March 2013.
  14. Anderson, M.E., Almond, J.E., Evans, F.J. and Long, J.A., 1999. "Devonian (Emsian-Eifelian) fish from the Lower Bokkeveld Group (Ceres Subgroup), South Africa. Journal of African Earth Sciences, 29(1), pp.179-193". doi:10.1016/S0899-5362(99)00088-3.{{cite journal}}: Cite journal requires |journal= (help)CS1 maint: multiple names: authors list (link) CS1 maint: numeric names: authors list (link)
  15. Anderson, M.E., Long, J.A., Evans, F.J., Almond, J.E., Theron, J.N. and Bender, P.A., 1999. Biogeographic affinities of Middle and Late Devonian fishes of South Africa. Records of the Western Australian Museum, Supplement, 57, pp.157-168 PDF: http://museum.wa.gov.au/sites/default/files/11.%20Anderson,%20Long,%20Evans,%20Almond,%20Theron,%20Bender.pdf
  16. Becker, G., Bless, M. and Theron, J., 1994. Malvinokaffric ostracods from South Africa (Southern Cape; Bokkeveld Group, Devonian). Courier Forschunginstitut Senckenberg, 169, pp.239-259.
  17. Lieberman, Bruce S. (1993-07-01). "Systematics and biogeography of the "Metacryphaeus group" Calmoniidae (Trilobita, Devonian), with comments on adaptive radiations and the geological history of the Malvinokaffric Realm". Journal of Paleontology. 67 (4): 549–570. Bibcode:1993JPal...67..549L. doi:10.1017/S0022336000024902. ISSN   0022-3360. S2CID   130430320.