Katberg Formation

Last updated
Katberg Formation
Stratigraphic range: Early Triassic
Induan-Olenekian
~252–247  Ma
O
S
D
C
P
T
J
K
Pg
N
Hennie Steyn Bridge over Gariep dam - panoramio.jpg
Hillside overlooking Gariep Dam where Katberg Formation rocks are known
Type Geological formation
Unit of Beaufort Group
Underlies Burgersdorp Formation
Overlies Balfour Formation
Thicknessup to 1,000 m (3,300 ft)
Lithology
Primary Sandstone
Other Mudstone, calcareous concretions
Location
Coordinates 30°30′S26°00′E / 30.5°S 26.0°E / -30.5; 26.0
Region Eastern Cape & Free State
CountryFlag of South Africa.svg  South Africa
Geology of Karoo Supergroup.png

The Katberg Formation is a geological formation that is found in the Beaufort Group, a major geological group that forms part of the greater Karoo Supergroup in South Africa. The Katberg Formation is the lowermost geological formation of the Tarkastad Subgroup which contains the Lower to Middle Triassic-aged rocks of the Beaufort Group. Outcrops and exposures of the Katberg Formation are found east of 24 degrees on wards and north of Graaff-Reniet, Nieu Bethesda, Cradock, Fort Beaufort, Queensdown, and East London in the south, and ranges as far north as Harrismith in deposits that form a ring around the Drakensberg mountain ranges. [1] [2] [3] [4] [5]

Contents

Geology

The Katberg Formation overlies the Balfour Formation of the Adelaide Subgroup and the Burgersdorp Formation of the upper Tarkastad Subgroup, all pertaining to the greater Beaufort Group. The appearance of the Katberg Formation rocks starkly differs from the underlying Balfour Formation due to its high sandstone content and reddish colored mudstones. [6] The high sandstone content of the Katberg Formation, which range from light olive grey, greenish grey, or light brownish grey in color, is a key characteristic of this formation. However, the rocks of the Katberg Formation are differentiated into southern and northern sedimentary facies which grade laterally into one another from the south upwards. The southern and northern Katberg Formation deposits also vary drastically in thickness. [7] [8] [9]

The southern Katberg Formation deposits are the most sandstone-rich, comprising approximately 90 percent sandstone and are fine to medium-grained. Along the coast outcrops and exposures, especially close to East London, the Katberg sandstones are coarse-grained and contain pebbles up to 15 centimetres (5.9 in) in diameter. In the north the sandstones remain consistently fine-grained and exhibit fining upward cycles. The ratio between the sandstones and mudstones grows more equal in the northern deposits, making differentiation between the northern Katberg and Burgersdorp Formations tricky in areas. The Katberg Formation reaches its maximum thickness near East London at 1238m, thinning out gradually northwards. The sandstones are predominantly tabular although exhibit some planar and trough cross-bedding along with horizontal laminations and ripple cross-laminations. The sandstones contain much thinner beds of brownish-red shale and reddish to purple and some minor greenish mudstones, which are frequently structureless or horizontally laminated. Mudstones become redder in colour in the upper Katberg deposits as it grades laterally into the Burgersdorp Formation. Intraformational mud clasts, pedogenic and calcareous nodules are found commonly throughout. [10] [11] [12]

The appearance and proliferation of the sandstone deposits, especially in the southern and lower Katberg Formation, marks the change to an alluvial fan and braided river environment in the Early Triassic due to the presence of coarser-grained sandstones that lack fining upward sequences. Due to the ongoing biotic crises in the aftermath of the Permo-Triassic extinction event, rampant erosion took place as there was a stark drop in plant and animal species diversity. This resulted in unstable ecological niches. The environment at this time was also arid and hot where the rivers seasonally ran dry. When the rainy season arrived, flash floods took place. In the northern Katberg, a drop in the level of preserved sandstones reveals that by the beginning of the Middle Triassic ecosystems were beginning to stabilize after the Permo-Triassic extinction event. The presence of fine-grained sandstones and more plentiful mudstones show that there was a decrease in energy levels in the depositional environment, meaning that the fast flowing braided rivers were steadily replaced by slower flowing, meandering river channels. The environment was still semi-arid, however, due to the presence of the redder mudstones. [13]

Paleontology

The Katberg Formation documents the marked drop in species abundance due to biotic crises that followed the Permo-Triassic extinction event. The most ubiquitous fossils found are different species of Lystrosaurus as the Katberg Formation contains the rocks of the Lystrosaurus Assemblage Zone. The most common fossils found are those of Lystrosaurus murrayi and Lystrosaurus declivis . In the lower Katberg Formation, complete and sometimes mummified articulated skeletons of L. murrayi and L. declivus are found in bone beds containing several individuals. The bone beds are almost always overlain by mudstone infilled with sandstone and capped by other coarse-grained sediments. This provides substantial geological and taphonomical evidence that these Lystrosaurus died near to dried up river channels and were mummified in the arid climate before their remains were buried by flash floods. [14] [15]

The Permo-Triassic extinction event caused the extinction of all gorgonopsians and almost all dicynodont species except for Lystrosaurus and a select few other species such as Myosaurus gracilis . Therocephalian species experience a Lilliput effect where only smaller species survived and thrived after the extinction event. By the upper sections of the biozone, ecological niches began to recover as evidenced by the appearance of new species. Cynodonts experienced the greatest diversification with species such as Thrinaxodon liorhinus and Galesaurus planiceps being found. [16] Small procolonphonid parareptiles such as Owenetta kitchingorum and Procolophon trigoniceps are also found in the Katberg Formation. In addition, the earliest ancestors of Archosauria appear in the lower Katberg Formation.These species are known as archosauromorphs and archosauriformes. Examples of these are Prolacerta broomi and Proterosuchus fergusi respectively. [17] [18] Notably, the Katberg Formation frequently yields burrow casts left by Lystrosaurus . [19]

Correlation

The lower Katberg Formation is known to correspond in age with the Santa Maria Formation of the upper Paraná Basin in southern Brazil. [20]

See also

Related Research Articles

<span class="mw-page-title-main">Karoo Supergroup</span> Widespread Mesozoic stratigraphic unit in southern Africa

The Karoo Supergroup is the most widespread stratigraphic unit in Africa south of the Kalahari Desert. The supergroup consists of a sequence of units, mostly of nonmarine origin, deposited between the Late Carboniferous and Early Jurassic, a period of about 120 million years.

<span class="mw-page-title-main">Beaufort Group</span> Third of the main subdivisions of the Karoo Supergroup in South Africa

The Beaufort Group is the third of the main subdivisions of the Karoo Supergroup in South Africa. It is composed of a lower Adelaide Subgroup and an upper Tarkastad Subgroup. It follows conformably after the Ecca Group and unconformably underlies the Stormberg Group. Based on stratigraphic position, lithostratigraphic and biostratigraphic correlations, palynological analyses, and other means of geological dating, the Beaufort Group rocks are considered to range between Middle Permian (Wordian) to Early Triassic (Anisian) in age.

<i>Dinogorgon</i> Extinct genus of therapsids

Dinogorgon is a genus of gorgonopsid from the Late Permian of South Africa and Tanzania. The generic name Dinogorgon is derived from Greek, meaning "terrible gorgon", while its species name rubidgei is taken from the surname of renowned Karoo paleontologist, Professor Bruce Rubidge, who has contributed to much of the research conducted on therapsids of the Karoo Basin. The type species of the genus is D. rubidgei.

<i>Tapinocephalus</i> Assemblage Zone

The Tapinocephalus Assemblage Zone is a tetrapod assemblage zone or biozone which correlates to the middle Abrahamskraal Formation, Adelaide Subgroup of the Beaufort Group, a fossiliferous and geologically important geological Group of the Karoo Supergroup in South Africa. The thickest outcrops, reaching approximately 2,000 metres (6,600 ft), occur from Merweville and Leeu-Gamka in its southernmost exposures, from Sutherland through to Beaufort West where outcrops start to only be found in the south-east, north of Oudshoorn and Willowmore, reaching up to areas south of Graaff-Reinet. Its northernmost exposures occur around the towns Fraserburg and Victoria West. The Tapinocephalus Assemblage Zone is the second biozone of the Beaufort Group.

<i>Cistecephalus</i> Assemblage Zone

The Cistecephalus Assemblage Zone is a tetrapod assemblage zone or biozone found in the Adelaide Subgroup of the Beaufort Group, a majorly fossiliferous and geologically important geological group of the Karoo Supergroup in South Africa. This biozone has outcrops located in the Teekloof Formation north-west of Beaufort West in the Western Cape, in the upper Middleton and lower Balfour Formations respectively from Colesberg of the Northern Cape to east of Graaff-Reinet in the Eastern Cape. The Cistecephalus Assemblage Zone is one of eight biozones found in the Beaufort Group, and is considered to be Late Permian in age.

<i>Daptocephalus</i> Assemblage Zone

The Daptocephalus Assemblage Zone is a tetrapod assemblage zone or biozone found in the Adelaide Subgroup of the Beaufort Group, a majorly fossiliferous and geologically important geological Group of the Karoo Supergroup in South Africa. This biozone has outcrops located in the upper Teekloof Formation west of 24°E, the majority of the Balfour Formation east of 24°E, and the Normandien Formation in the north. It has numerous localities which are spread out from Colesberg in the Northern Cape, Graaff-Reniet to Mthatha in the Eastern Cape, and from Bloemfontein to Harrismith in the Free State. The Daptocephalus Assemblage Zone is one of eight biozones found in the Beaufort Group and is considered Late Permian (Lopingian) in age. Its contact with the overlying Lystrosaurus Assemblage Zone marks the Permian-Triassic boundary.

<i>Lystrosaurus</i> Assemblage Zone

The Lystrosaurus Assemblage Zone is a tetrapod assemblage zone or biozone which correlates to the upper Adelaide and lower Tarkastad Subgroups of the Beaufort Group, a fossiliferous and geologically important geological Group of the Karoo Supergroup in South Africa. This biozone has outcrops in the south central Eastern Cape and in the southern and northeastern Free State. The Lystrosaurus Assemblage Zone is one of eight biozones found in the Beaufort Group, and is considered to be Early Triassic in age.

<i>Cynognathus</i> Assemblage Zone Biozone which correlates to the Burgersdorp Formation of the Beaufort Group

The Cynognathus Assemblage Zone is a tetrapod biozone utilized in the Karoo Basin of South Africa. It is equivalent to the Burgersdorp Formation, the youngest lithostratigraphic formation in the Beaufort Group, which is part of the fossiliferous and geologically important Karoo Supergroup. The Cynognathus Assemblage Zone is the youngest of the eight biozones found in the Beaufort Group, and is considered to be late Early Triassic (Olenekian) to early Middle Triassic (Anisian) in age. The name of the biozone refers to Cynognathus crateronotus, a large and carnivorous cynodont therapsid which occurs throughout the entire biozone.

<i>Pristerognathus</i> Assemblage Zone

The Pristerognathus Assemblage Zone is a tetrapod assemblage zone or biozone which correlates to the upper Abrahamskraal Formation and lowermost Teekloof Formation, Adelaide Subgroup of the Beaufort Group, a fossiliferous and geologically important geological Group of the Karoo Supergroup in South Africa. The thickest outcrops, reaching not more than 300 metres (980 ft), occur just east of Sutherland through to Beaufort West in the south and Victoria West in the north. Exposures are also found west of Colesberg and south of Graaff-Reinet. The Pristerognathus Assemblage Zone is the third biozone of the Beaufort Group.

<i>Tropidostoma</i> Assemblage Zone

The Tropidostoma Assemblage Zone is a tetrapod assemblage zone or biozone which correlates to the lower Teekloof Formation, Adelaide Subgroup of the Beaufort Group, a fossiliferous and geologically important geological Group of the Karoo Supergroup in South Africa. The thickest outcrops, reaching approximately 240 metres (790 ft), occur from east of Sutherland through to Beaufort West and Victoria West, to areas south of Graaff-Reinet. Its northernmost exposures occur west/north-west of Colesberg. The Tropidostoma Assemblage Zone is the fourth biozone of the Beaufort Group.

<i>Eodicynodon</i> Assemblage Zone

The Eodicynodon Assemblage Zone is a tetrapod assemblage zone or biozone which correlates to the Abrahamskraal Formation, Adelaide Subgroup of the Beaufort Group, a fossiliferous and geologically important geological Group of the Karoo Supergroup in South Africa. The thickest outcrops, reaching approximately 620 metres (2,030 ft), occur south-east of Sutherland, north of Prince Albert, and south-east of Beaufort West. The Eodicynodon Assemblage Zone is the lowermost biozone of the Beaufort Group.

<span class="mw-page-title-main">Ecca Group</span> Second of the main subdivisions of the Karoo Supergroup of geological strata in southern Africa

The Ecca Group is the second of the main subdivisions of the Karoo Supergroup of geological strata in southern Africa. It mainly follows conformably after the Dwyka Group in some sections, but in some localities overlying unconformably over much older basement rocks. It underlies the Beaufort Group in all known outcrops and exposures. Based on stratigraphic position, lithostratigraphic correlation, palynological analyses, and other means of geological dating, the Ecca Group ranges between Early to earliest Middle Permian in age.

<span class="mw-page-title-main">Clarens Formation</span> Geological formation of the Stormberg Group in southern Africa

The Clarens Formation is a geological formation found in several localities in Lesotho and in the Free State, KwaZulu-Natal, and Eastern Cape provinces in South Africa. It is the uppermost of the three formations found in the Stormberg Group of the greater Karoo Supergroup rocks and represents the final phase of preserved sedimentation of the Karoo Basin.

Platycraniellus is an extinct genus of carnivorous cynodonts from the Early Triassic. It is known from the Lystrosaurus Assemblage Zone of the Normandien Formation in South Africa. P. elegans is the only species in this genus based on the holotype specimen from the Ditsong National Museum of Natural History in Pretoria, South Africa. Due to limited fossil records for study, Platycraniellus has only been briefly described a handful of times.

<span class="mw-page-title-main">Molteno Formation</span> Triassic geological formation in the Stormberg Group in Lesotho and South Africa

The Molteno Formation is a geological formation found in several localities in Lesotho and South Africa. It lies mainly south of Maseru, near Burgersdorp, Aliwal North, Dordrecht, Molteno, and Elliot. It extends as far north as Matatiele in the Eastern Cape. The formation's localities lie along the Drakensberg Mountains in Kwazulu-Natal, and near Ladybrand in the Free State of South Africa. The Molteno Formation is the lowermost of the three formations in the Stormberg Group of the greater Karoo Supergroup. The Molteno Formation represents the initial phase of preserved sedimentation of the Stormberg Group.

<i>Langbergia</i> Extinct genus of cynodonts

Langbergia is an extinct genus of trirachodontid cynodont from the Early Triassic of South Africa. The type and only species L. modisei was named in 2006 after the farm where the holotype was found, Langberg 566. Langbergia was found in the Burgersdorp Formation in the Beaufort Group, a part of the Cynognathus Assemblage Zone. The closely related trirachodontids Trirachodon and Cricodon were found in the same area.

<span class="mw-page-title-main">Abrahamskraal Formation</span> Geological formation of the Beaufort Group in South Africa

The Abrahamskraal Formation is a geological formation and is found in numerous localities in the Northern Cape, Western Cape, and the Eastern Cape of South Africa. It is the lowermost formation of the Adelaide Subgroup of the Beaufort Group, a major geological group that forms part of the greater Karoo Supergroup. It represents the first fully terrestrial geological deposits of the Karoo Basin. Outcrops of the Abrahamskraal Formation are found from the small town Middelpos in its westernmost localities, then around Sutherland, the Moordenaarskaroo north of Laingsburg, Williston, Fraserburg, Leeu-Gamka, Loxton, and Victoria West in the Western Cape and Northern Cape. In the Eastern Cape outcrops are known from Rietbron, north of Klipplaat and Grahamstown, and also southwest of East London.

<span class="mw-page-title-main">Balfour Formation</span> Geological formation in the Beaufort Group of South Africa

The Balfour Formation is a geological formation that is found in the Beaufort Group, a major geological group that forms part of the greater Karoo Supergroup in South Africa. The Balfour Formation is the uppermost formation of the Adelaide Subgroup which contains all the Late Permian-aged biozones of the Beaufort Group. Outcrops and exposures of the Balfour Formation are found from east of 24 degrees in the highest mountainous escarpments between Beaufort West and Fraserburg, but most notably in the Winterberg and Sneeuberg mountain ranges near Cradock, the Baviaanskloof river valley, Graaff-Reniet and Nieu Bethesda in the Eastern Cape, and in the southern Free State province.

<span class="mw-page-title-main">Middleton Formation</span> Late middle Permian geological formation in the Eastern Cape

The Middleton Formation is a geological formation that extends through the Northern Cape, Western Cape, and Eastern Cape provinces of South Africa. It overlies the lower Abrahamskraal Formation, and is the eastern correlate, East of 24ºE, of the Teekloof Formation. Outcrops and exposures of the Middleton Formation range from Graaff-Reinet in the Eastern Cape onwards. The Middleton Formation's type locality lies near the small hamlet, Middleton, approximately 25 km south of Cookhouse. Other exposures lie in hillsides along the Great Fish River in the Eastern Cape. The Middleton Formation forms part of the Adelaide Subgroup of the Beaufort Group, which itself forms part of the Karoo Supergroup.

<span class="mw-page-title-main">Teekloof Formation</span> Late Permian geological formation that forms part of the Beaufort Group of South Africa

The Teekloof Formation is a geological formation that forms part of the Beaufort Group, one of the five geological groups that comprises the Karoo Supergroup in South Africa. The Teekloof Formation is the uppermost formation of Adelaide Subgroup deposits West of 24ºE and contains Middle to Late Permian-aged deposits and four biozones of the Beaufort Group. It overlies the Abrahamskraal Formation. The Teekloof Formation does not underlie other units other than the younger Karoo dolerites and sills that relate to the emplacement of the Early Jurassic Drakensberg Group to the east. Outcrops and exposures of the Teekloof Formation range from Sutherland through the mountain escarpments between Fraserburg and Beaufort West. The northernmost localities of the Teekloof Formation are found by Loxton, Victoria West and Richmond.

References

  1. Broom, R (1906). "V.—On the Permian and Triassic Faunas of South Africa". Geological Magazine. 3 (1): 29–30. Bibcode:1906GeoM....3...29B. doi:10.1017/s001675680012271x. S2CID   129265956.
  2. Johnson, M. R. (1989-11-01). "Paleogeographic significance of oriented calcareous concretions in the Triassic Katberg Formation, South Africa". Journal of Sedimentary Research. 59 (6): 1008–1010. doi:10.1306/212F90D9-2B24-11D7-8648000102C1865D. ISSN   1527-1404.
  3. Keyser, A. W., and Smith, R. M. H. (1978). Vertebrate biozonation of the Beaufort Group with special reference to the western Karoo Basin. Geological Survey, Department of Mineral And Energy Affairs, Republic of South Africa.
  4. Rubidge, B. S. (ed.) 1995b. Biostratigraphy of the Beaufort Group (Karoo Supergroup). South African Committee of Stratigraphy. Biostratigraphic Series 1. Pretoria, Council for Geoscience.
  5. Viglietti, Pia A. (2012). "Life after extinction: palaeoenvironments of the earliest Triassic lower Katberg formation, including the origin of Lystrosaurus Bonebeds from the Karoo Basin, South Africa". hdl: 11427/11173 .{{cite journal}}: Cite journal requires |journal= (help)
  6. Viglietti, Pia; Rubidge, Bruce; Malcom Harris Smith, Roger (2017-03-01). "Revised lithostratigraphy of the upper Permian Balfour and Teekloof formations of the main Karoo Basin, South Africa". South African Journal of Geology. 120: 45–60. doi:10.25131/gssajg.120.1.45.
  7. Kitching, J. W. (1970). A short review of the Beaufort zoning in South Africa. In Second Gondwana Symposium Proceedings and Papers (Vol. 1, pp. 309-312).
  8. Kitching, J. W. (1977). The distribution of the karroo vertebrate fauna: with special reference to certain genera and the bearing of this distribution on the zoning of the Beaufort Beds, Bernard Price Institute for Palaeontological Research, University of the Witwatersrand.
  9. Kitching, J. W. (1984). A reassessment of the biozonation of the Beaufort Group. Paleo News, 4(1), 12-13.
  10. Jirah, Sifelani; McPhee, Blair W.; Viglietti, Pia A.; Bamford, Marion K.; Choiniere, Jonah N.; Hancox, P. John; Barbolini, Natasha; Day, Michael O.; Rubidge, Bruce S. (2016), "Advances in Nonmarine Karoo Biostratigraphy: Significance for Understanding Basin Development", Origin and Evolution of the Cape Mountains and Karoo Basin, Regional Geology Reviews, Springer, Cham, pp. 141–149, doi:10.1007/978-3-319-40859-0_14, ISBN   9783319408583
  11. O.Catuneanu, H.Wopfner, P.G.Eriksson, B.Cairncross, B.S.Rubidge, R.M.H.Smith, P.J.Hancox (2005-10-01). "The Karoo basins of south-central Africa". Journal of African Earth Sciences. 43 (1–3): 211–253. Bibcode:2005JAfES..43..211C. doi:10.1016/j.jafrearsci.2005.07.007. ISSN   1464-343X.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  12. Ward, Peter D.; Koch, Paul L.; Smith, Roger M. H.; MacLeod, Kenneth G. (2000-03-01). "Timing of mammal-like reptile extinctions across the Permian-Triassic boundary in South Africa". Geology. 28 (3): 227–230. Bibcode:2000Geo....28..227M. doi:10.1130/0091-7613(2000)28<227:TOMREA>2.0.CO;2. ISSN   0091-7613.
  13. Smith, R.M.H.,Eriksson, P.G., Botha, W.J. (1993-01-01). "A review of the stratigraphy and sedimentary environments of the Karoo-aged basins of Southern Africa". Journal of African Earth Sciences (and the Middle East). 16 (1–2): 143–169. Bibcode:1993JAfES..16..143S. doi:10.1016/0899-5362(93)90164-L. ISSN   0899-5362.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  14. Botha, Jennifer; Smith, Roger M. H. (2007-06-01). "Lystrosaurus species composition across the Permo–Triassic boundary in the Karoo Basin of South Africa". Lethaia. 40 (2): 125–137. doi:10.1111/j.1502-3931.2007.00011.x. ISSN   1502-3931.
  15. Pia A.Viglietti, Roger M.H.Smith, John S.Compton (2013-12-15). "Origin and palaeoenvironmental significance of Lystrosaurus bonebeds in the earliest Triassic Karoo Basin, South Africa". Palaeogeography, Palaeoclimatology, Palaeoecology. 392: 9–21. Bibcode:2013PPP...392....9V. doi:10.1016/j.palaeo.2013.08.015. ISSN   0031-0182.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  16. Neveling, J., Rubidge, B.S. and Hancox, P.J. (1999-01-01). "A lower Cynognathus Assemblage Zone fossil from the Katberg Formation (Beaufort Group, South Africa)". www.researchgate.net.{{cite web}}: CS1 maint: multiple names: authors list (link)
  17. Ruta, Marcello; Angielczyk, Kenneth D.; Huttenlocker, Adam K.; Codron, Daryl; Botha-Brink, Jennifer (2016-04-05). "Breeding Young as a Survival Strategy during Earth's Greatest Mass Extinction". Scientific Reports. 6: 24053. doi:10.1038/srep24053. ISSN   2045-2322. PMC   4820772 . PMID   27044713.
  18. Sues, Hans-Dieter; Modesto, Sean P. (2004-03-01). "The skull of the Early Triassic archosauromorph reptile Prolacerta broomi and its phylogenetic significance". Zoological Journal of the Linnean Society. 140 (3): 335–351. doi: 10.1111/j.1096-3642.2003.00102.x . ISSN   0024-4082.
  19. Bordy, Emese M.; Sztanó, Orsolya; Rubidge, Bruce S.; Bumby, Adam (2011-03-01). "Early Triassic vertebrate burrows from the Katberg Formation of the south-western Karoo Basin, South Africa". Lethaia. 44 (1): 33–45. doi:10.1111/j.1502-3931.2010.00223.x. ISSN   1502-3931.
  20. Sérgio Dias-da-Silva, , Sean Patrick Modesto, and , Cesar Leandro Schultz (2006). "New material of Procolophon (Parareptilia: Procolophonoidea) from the Lower Triassic of Brazil, with remarks on the ages of the Sanga do Cabral and Buena Vista formations of South America". Canadian Journal of Earth Sciences. 43 (11): 1685–1693. doi:10.1139/e06-043.{{cite journal}}: CS1 maint: multiple names: authors list (link)