Lystrosaurus Assemblage Zone

Last updated
Lystrosaurus Assemblage Zone
Stratigraphic range: Early Triassic
~251–249  Ma
O
S
D
C
P
T
J
K
Pg
N
Lystr murr1DB.jpg
Lystrosaurus murrayi
Type Biozone
Unit of Beaufort Group within Adelaide Subgroup
Sub-unitsUpper Balfour Formation west of 24°E
Entire Katberg Formation east of 24°E
Underlies Cynognathus Assemblage Zone
Overlies Daptocephalus Assemblage Zone
Thicknessup to 2,723.1 feet (830 m)
Location
Location Karoo Basin
Region Eastern Cape, Free State
CountryFlag of South Africa.svg  South Africa
Extent Karoo Basin
Type section
Named for Lystrosaurus
Named by Robert Broom
Year defined1906, 1909

The Lystrosaurus Assemblage Zone is a tetrapod assemblage zone or biozone which correlates to the upper Adelaide and lower Tarkastad Subgroups of the Beaufort Group, a fossiliferous and geologically important geological Group of the Karoo Supergroup in South Africa. This biozone has outcrops in the south central Eastern Cape (Middelburg, Queenstown, Aliwal North, Nieu-Bethesda) and in the southern and northeastern Free State (Bethulie, Gariep Dam, Mthatha, Harrismith). The Lystrosaurus Assemblage Zone is one of eight biozones found in the Beaufort Group, and is considered to be Early Triassic in age. [1] [2]

Contents

The name of the biozone refers to Lystrosaurus , a small to medium-sized dicynodont therapsid. It is characterized by the appearance of further Lystrosaurus subspecies which are confined to this biozone. [3] Lystrosaurus maccaigi and Lystrosaurus curvatus are the only two species found outside the Lystrosaurus Assemblage Zone in Upper Permian deposits of the underlying Daptocephalus Assemblage Zone. [4] [5]

History

The first fossils to be found in the Beaufort Group rocks that encompass the current eight biozones were discovered by Andrew Geddes Bain in 1856. [6] However, it was not until 1892 that it was observed that the geological strata of the Beaufort Group could be differentiated based on their fossil taxa. The initial undertaking was done by Harry Govier Seeley who subdivided the Beaufort Group into three biozones, [7] which he named (from oldest to youngest):

These proposed biozones Seeley named were subdivided further by Robert Broom between 1906 and 1909. [8] Broom proposed the following biozones (from oldest to youngest):

These biozone divisions were approved by paleontologists of the time and were left largely unchanged for several decades. [9] The Lystrosaurus Assemblage Zone was first named by Robert Broom in 1906. [10] Initially Broom had subdivided the existing Lystrosaurus zone into the Lystrosaurus and Procolophon Assemblage Zones respectively. The biozone was later revised in 1976 by James Kitching where Kitching assimilated the Procolophon zone into the Lystrosaurus zone due to discovering that fossils of the small parareptile Procolophon were likewise found throughout the Lystrosaurus zone. [11] [12]

Lithology

The Lystrosaurus Assemblage Zone ranges from the Palingkloof Member of the upper Balfour Formation west of 24°E. It comprises the entire Katberg Formation and the first third of the Burgersdorp Formation east of 24°E. [13] The Balfour Formation is located within the Adelaide Subgroup, while the Katberg and Burgersdorp are within the Tarkastad Subgroup of the Beaufort Group. Its contact with the underlying Daptocephalus Assemblage Zone marks the Permian-Triassic boundary. [14] [15]

The boundary is defined by a change in the sedimentary rock types. The changing rock types across the boundary reveal a change in the fluvial environment, from meandering high sinuosity river channels composed of greenish-grey siltstones and mudstones found in the underlying Daptocephalus Assemblage Zone. [16] [17] [18] From the start of the Palingkloof Member the predominant presence of mudstone and siltstone show that meandering river channels were present, however, in arid and warmer conditions due to change in colour of the rocks to reddish-brown and maroon. [19] [20] These are inter-spaced with claystones, olive to grey fine-grained sandstone, and reddish-brown to maroon shales. In the overlying Katberg Formation, alluvial fans containing braided low sinuosity river channels comprising mainly coarse-grained sandstone appear. These sandstones form either single and multi-storey channel sandstones and crevasse-splay sandstones. [21] The dominance of sandstones is diagnostic of the Katberg Formation. The sandstones are interspersed by reddish-brown siltstones and mudstones which were deposited as silt sediments washed down the braided channels further down the Karoo Basin. [22] The mudstones here often contain cracks which are infilled with sandstone. [23] The domination of sandstone in the Lystrosaurus Assemblage Zone shows that the climate at the time had become more arid, where rainfall was unpredictable and the shallow, braided rivers would seasonally dry up. [24] When the rivers flowed again after the rains, due to being shallow, they would frequently flood their banks, hence the presence of crevasse-splays. Conglomerates are also found in eastern outcrops, which are indicative of erosion occurring due to die-offs of plant ecosystems. There is in addition a notable gap in coal deposits at this time as a result. Siltstone and mudstone outcrops are less common, with the majority of outcrops of these being found in the lower sections within the Palingkloof Member and in its uppermost section within the Burgersdorp Formation. Nodule conglomerates comprising pedogenic nodules and intrabasinal clasts are also found. [25] [26]

Paleontology

There is a marked drop in species abundance in the Lystrosaurus Assemblage Zone due to ecological crises which followed the Permian-Triassic extinction event. [27] [28] However, this has not affected the abundance of vertebrate fossils found within this biozone. The most ubiquitous fossils found are different species of Lystrosaurus , the most commonly occurring being Lystrosaurus murrayi and Lystrosaurus declivis . Lystrosaurus maccaigi is the only species of Lystrosaurus not found in the biozone of its namesake. [29] [30] Lystrosaurus curvatus does appear in the lowermost section of the biozone, although it disappears at the contact between the Palingkloof Member of the Balfour Formation and the Katberg Formation. For this reason L. curvatus is used as an index fossil for outcrops of the Permian-Triassic boundary. In the lower Katberg Formation, complete and sometimes mummified articulated skeletons of L. murrayi and L. declivus are found in bonebeds containing several individuals. [31] The bonebeds are almost always overlain by mudrock infilled with sandstone and capped by other coarse-grained sediments. This provides substantial geological and taphonomical evidence that these Lystrosaurus died near to dried up river channels, mummified in the arid climate before their remains were buried by floods.

The Permian-Triassic extinction event caused the extinction of all gorgonopsians and almost all dicynodont species [32] except for Lystrosaurus and a select few other species such as Myosaurus gracilis . [33] Therocephalian species experienced a Lilliput Effect where only smaller species survived and thrived after the extinction event. Moschorhinus , for example, was one of the larger therocephalians to survive the initial extinction event, however, fossil occurrences of this species cease above the lower Katberg Formation. [34] This is also true of Lystrosaurus where only the smaller species thrived in the Triassic. By the upper sections of the biozone, ecological niches began to recover as evidenced by the appearance of new species. [35] Cynodonts experienced the greatest diversification with species such as Thrinaxodon liorhinus and Galesaurus planiceps being found. [36] [37] [38] In the upper Katberg and the lower Burgersdorp Formations more derived cynodonts, the Eucynodontia, make an appearance. [39] Small procolonphonoid parareptiles such as Owenetta kitchingorum and Procolophon trigoniceps, and temnospondyl amphibians are also found. [40] [41] [42] [43] In addition, the earliest ancestors of Archosauria appear in the Lystrosaurus zone. These species are known as archosauromorphs and archosauriformes. Examples of these are Prolacerta broomi and Proterosuchus fergusi respectively found in the lower Lystrosaurus Assemblage Zone. [44] [45] [46] A variety of ichnofossils are also found, especially burrow casts left by Lystrosaurus . [47] [48] [49] The deep-bodied ray-finned fish Caruichthys [50] was also found in layers of this biozone.

Age and correlations

The Lystrosaurus Assemblage Zone dates to approximately 251 to 249 Ma, and correlates with the Kopanskaya and Staritskaya Formations of Russia, [51] and with the Jiucaiyuan Formation of China, the Knocklofty and Arcadia Formations of Australia, the Buena Vista Formation of the Paraná Basin, South America, and the Panchet Formation of India. [52]

See also

Related Research Articles

<i>Cynognathus</i> Extinct genus of cynodonts

Cynognathus is an extinct genus of large-bodied cynodontian therapsids that lived in the Middle Triassic. It is known from a single species, Cynognathus crateronotus. Cynognathus was a predator closely related to mammals and had a southern hemispheric distribution. Fossils have so far been recovered from South Africa, Argentina, Antarctica, and Namibia.

<i>Lystrosaurus</i> Genus of Late Permian and Early Triassic dicynodont therapsids

Lystrosaurus is an extinct genus of herbivorous dicynodont therapsids from the late Permian and Early Triassic epochs. It lived in what is now Antarctica, India, China, Mongolia, European Russia and South Africa. Four to six species are currently recognized, although from the 1930s to 1970s the number of species was thought to be much higher. They ranged in size from that of a small dog to 8 feet long.

<i>Diictodon</i> Extinct genus of dicynodonts

Diictodon is an extinct genus of pylaecephalid dicynodont. These mammal-like synapsids lived during the Late Permian period, approximately 255 million years ago. Fossils have been found in the Cistecephalus Assemblage Zone of the Madumabisa Mudstone of the Luangwa Basin in Zambia and the Tropidostoma Assemblage Zone of the Teekloof Formation, Tapinocephalus Assemblage Zone of the Abrahamskraal Formation, Dicynodon Assemblage Zone of the Balfour Formation, Cistecephalus Assemblage Zone of the Middleton or Balfour Formation of South Africa and the Guodikeng Formation of China. Roughly half of all Permian vertebrate specimens found in South Africa are those of Diictodon. This small herbivorous animal was one of the most successful synapsids in the Permian period.

<span class="mw-page-title-main">Beaufort Group</span> Third of the main subdivisions of the Karoo Supergroup in South Africa

The Beaufort Group is the third of the main subdivisions of the Karoo Supergroup in South Africa. It is composed of a lower Adelaide Subgroup and an upper Tarkastad Subgroup. It follows conformably after the Ecca Group and unconformably underlies the Stormberg Group. Based on stratigraphic position, lithostratigraphic and biostratigraphic correlations, palynological analyses, and other means of geological dating, the Beaufort Group rocks are considered to range between Middle Permian (Wordian) to Early Triassic (Anisian) in age.

<i>Tapinocephalus</i> Assemblage Zone

The Tapinocephalus Assemblage Zone is a tetrapod assemblage zone or biozone which correlates to the middle Abrahamskraal Formation, Adelaide Subgroup of the Beaufort Group, a fossiliferous and geologically important geological Group of the Karoo Supergroup in South Africa. The thickest outcrops, reaching approximately 2,000 metres (6,600 ft), occur from Merweville and Leeu-Gamka in its southernmost exposures, from Sutherland through to Beaufort West where outcrops start to only be found in the south-east, north of Oudshoorn and Willowmore, reaching up to areas south of Graaff-Reinet. Its northernmost exposures occur around the towns Fraserburg and Victoria West. The Tapinocephalus Assemblage Zone is the second biozone of the Beaufort Group.

<i>Cistecephalus</i> Assemblage Zone

The Cistecephalus Assemblage Zone is a tetrapod assemblage zone or biozone found in the Adelaide Subgroup of the Beaufort Group, a majorly fossiliferous and geologically important geological group of the Karoo Supergroup in South Africa. This biozone has outcrops located in the Teekloof Formation north-west of Beaufort West in the Western Cape, in the upper Middleton and lower Balfour Formations respectively from Colesberg of the Northern Cape to east of Graaff-Reinet in the Eastern Cape. The Cistecephalus Assemblage Zone is one of eight biozones found in the Beaufort Group, and is considered to be Late Permian in age.

<i>Daptocephalus</i> Assemblage Zone

The Daptocephalus Assemblage Zone is a tetrapod assemblage zone or biozone found in the Adelaide Subgroup of the Beaufort Group, a majorly fossiliferous and geologically important geological Group of the Karoo Supergroup in South Africa. This biozone has outcrops located in the upper Teekloof Formation west of 24°E, the majority of the Balfour Formation east of 24°E, and the Normandien Formation in the north. It has numerous localities which are spread out from Colesberg in the Northern Cape, Graaff-Reniet to Mthatha in the Eastern Cape, and from Bloemfontein to Harrismith in the Free State. The Daptocephalus Assemblage Zone is one of eight biozones found in the Beaufort Group and is considered Late Permian (Lopingian) in age. Its contact with the overlying Lystrosaurus Assemblage Zone marks the Permian-Triassic boundary.

<i>Cynognathus</i> Assemblage Zone Biozone which correlates to the Burgersdorp Formation of the Beaufort Group

The Cynognathus Assemblage Zone is a tetrapod biozone utilized in the Karoo Basin of South Africa. It is equivalent to the Burgersdorp Formation, the youngest lithostratigraphic formation in the Beaufort Group, which is part of the fossiliferous and geologically important Karoo Supergroup. The Cynognathus Assemblage Zone is the youngest of the eight biozones found in the Beaufort Group, and is considered to be late Early Triassic (Olenekian) to early Middle Triassic (Anisian) in age. The name of the biozone refers to Cynognathus crateronotus, a large and carnivorous cynodont therapsid which occurs throughout the entire biozone.

<i>Pristerognathus</i> Assemblage Zone

The Pristerognathus Assemblage Zone is a tetrapod assemblage zone or biozone which correlates to the upper Abrahamskraal Formation and lowermost Teekloof Formation, Adelaide Subgroup of the Beaufort Group, a fossiliferous and geologically important geological Group of the Karoo Supergroup in South Africa. The thickest outcrops, reaching not more than 300 metres (980 ft), occur just east of Sutherland through to Beaufort West in the south and Victoria West in the north. Exposures are also found west of Colesberg and south of Graaff-Reinet. The Pristerognathus Assemblage Zone is the third biozone of the Beaufort Group.

<i>Tropidostoma</i> Assemblage Zone

The Tropidostoma Assemblage Zone is a tetrapod assemblage zone or biozone which correlates to the lower Teekloof Formation, Adelaide Subgroup of the Beaufort Group, a fossiliferous and geologically important geological Group of the Karoo Supergroup in South Africa. The thickest outcrops, reaching approximately 240 metres (790 ft), occur from east of Sutherland through to Beaufort West and Victoria West, to areas south of Graaff-Reinet. Its northernmost exposures occur west/north-west of Colesberg. The Tropidostoma Assemblage Zone is the fourth biozone of the Beaufort Group.

<i>Eodicynodon</i> Assemblage Zone

The Eodicynodon Assemblage Zone is a tetrapod assemblage zone or biozone which correlates to the Abrahamskraal Formation, Adelaide Subgroup of the Beaufort Group, a fossiliferous and geologically important geological Group of the Karoo Supergroup in South Africa. The thickest outcrops, reaching approximately 620 metres (2,030 ft), occur south-east of Sutherland, north of Prince Albert, and south-east of Beaufort West. The Eodicynodon Assemblage Zone is the lowermost biozone of the Beaufort Group.

Cynosaurus is an extinct genus of cynodonts. Remains have been found from the Dicynodon Assemblage Zone in South Africa. Cynosaurus was first described by Richard Owen in 1876 as Cynosuchus suppostus. Cynosaurus has been found in the late Permian period. Cyno- is derived from the Greek word kyon for dog and –sauros in Greek meaning lizard.

<i>Pachydectes</i> Extinct genus of therapsids

Pachydectes is an extinct genus of biarmosuchian therapsids from the Middle Permian of South Africa known from a single skull. The etymology of the name Pachydectes is derived from the Greek word pakhus, meaning "thick" or "thickened", and dektes, meaning "biter". In conjunction this name is representative of the unique pachyostotic bone present above the maxillary canine tooth found in the skull of the specimen. There is only one known species within the genus, Pachydectes elsi which is named in honor of the person who discovered the fossil.

<i>Progalesaurus</i> Extinct genus of cynodonts

Progalesaurus is an extinct genus of galesaurid cynodont from the early Triassic. Progalesaurus is known from a single fossil of the species Progalesaurus lootsbergensis, found in the Lystrosaurus Assemblage Zone of the Balfour Formation. Close relatives of Progalesaurus, other galesaurids, include Galesaurus and Cynosaurus. Galesaurids appeared just before the Permian-Triassic extinction event, and disappeared from the fossil record in the Middle-Triassic.

Platycraniellus is an extinct genus of carnivorous cynodonts from the Early Triassic. It is known from the Lystrosaurus Assemblage Zone of the Normandien Formation in South Africa. P. elegans is the only species in this genus based on the holotype specimen from the Ditsong National Museum of Natural History in Pretoria, South Africa. Due to limited fossil records for study, Platycraniellus has only been briefly described a handful of times.

<i>Langbergia</i> Extinct genus of cynodonts

Langbergia is an extinct genus of trirachodontid cynodont from the Early Triassic of South Africa. The type and only species L. modisei was named in 2006 after the farm where the holotype was found, Langberg 566. Langbergia was found in the Burgersdorp Formation in the Beaufort Group, a part of the Cynognathus Assemblage Zone. The closely related trirachodontids Trirachodon and Cricodon were found in the same area.

<span class="mw-page-title-main">Abrahamskraal Formation</span> Geological formation of the Beaufort Group in South Africa

The Abrahamskraal Formation is a geological formation and is found in numerous localities in the Northern Cape, Western Cape, and the Eastern Cape of South Africa. It is the lowermost formation of the Adelaide Subgroup of the Beaufort Group, a major geological group that forms part of the greater Karoo Supergroup. It represents the first fully terrestrial geological deposits of the Karoo Basin. Outcrops of the Abrahamskraal Formation are found from the small town Middelpos in its westernmost localities, then around Sutherland, the Moordenaarskaroo north of Laingsburg, Williston, Fraserburg, Leeu-Gamka, Loxton, and Victoria West in the Western Cape and Northern Cape. In the Eastern Cape outcrops are known from Rietbron, north of Klipplaat and Grahamstown, and also southwest of East London.

<span class="mw-page-title-main">Balfour Formation</span> Geological formation in the Beaufort Group of South Africa

The Balfour Formation is a geological formation that is found in the Beaufort Group, a major geological group that forms part of the greater Karoo Supergroup in South Africa. The Balfour Formation is the uppermost formation of the Adelaide Subgroup which contains all the Late Permian-aged biozones of the Beaufort Group. Outcrops and exposures of the Balfour Formation are found from east of 24 degrees in the highest mountainous escarpments between Beaufort West and Fraserburg, but most notably in the Winterberg and Sneeuberg mountain ranges near Cradock, the Baviaanskloof river valley, Graaff-Reniet and Nieu Bethesda in the Eastern Cape, and in the southern Free State province.

<span class="mw-page-title-main">Katberg Formation</span> Geological formation in the Beaufort Group of the Karoo Supergroup in South Africa

The Katberg Formation is a geological formation that is found in the Beaufort Group, a major geological group that forms part of the greater Karoo Supergroup in South Africa. The Katberg Formation is the lowermost geological formation of the Tarkastad Subgroup which contains the Lower to Middle Triassic-aged rocks of the Beaufort Group. Outcrops and exposures of the Katberg Formation are found east of 24 degrees on wards and north of Graaff-Reniet, Nieu Bethesda, Cradock, Fort Beaufort, Queensdown, and East London in the south, and ranges as far north as Harrismith in deposits that form a ring around the Drakensberg mountain ranges.

<span class="mw-page-title-main">Teekloof Formation</span> Late Permian geological formation that forms part of the Beaufort Group of South Africa

The Teekloof Formation is a geological formation that forms part of the Beaufort Group, one of the five geological groups that comprises the Karoo Supergroup in South Africa. The Teekloof Formation is the uppermost formation of Adelaide Subgroup deposits West of 24ºE and contains Middle to Late Permian-aged deposits and four biozones of the Beaufort Group. It overlies the Abrahamskraal Formation. The Teekloof Formation does not underlie other units other than the younger Karoo dolerites and sills that relate to the emplacement of the Early Jurassic Drakensberg Group to the east. Outcrops and exposures of the Teekloof Formation range from Sutherland through the mountain escarpments between Fraserburg and Beaufort West. The northernmost localities of the Teekloof Formation are found by Loxton, Victoria West and Richmond.

References

  1. Keyser, A. W., & Smith, R. M. H. (1978). Vertebrate biozonation of the Beaufort Group with special reference to the western Karoo Basin. Geological Survey, Department of Mineral And Energy Affairs, Republic of South Africa.
  2. Rubidge, B. S. (ed.) 1995b. Biostratigraphy of the Beaufort Group (Karoo Supergroup). South African Committee of Stratigraphy. Biostratigraphic Series 1. Pretoria, Council for Geoscience.
  3. Lucas, Spencer G. (2009-11-02). "Timing and magnitude of tetrapod extinctions across the Permo-Triassic boundary". Journal of Asian Earth Sciences. 36 (6): 491–502. Bibcode:2009JAESc..36..491L. doi:10.1016/j.jseaes.2008.11.016. ISSN   1367-9120.
  4. Smith, R.M.H. (1995-08-01). "Changing fluvial environments across the Permian-Triassic boundary in the Karoo Basin, South Africa and possible causes of tetrapod extinctions". Palaeogeography, Palaeoclimatology, Palaeoecology. 117 (1–2): 81–104. Bibcode:1995PPP...117...81S. doi:10.1016/0031-0182(94)00119-S. ISSN   0031-0182.
  5. BOTHA, JENNIFER; SMITH, ROGER M. H. (2007-04-08). "Lystrosaurus species composition across the Permo-Triassic boundary in the Karoo Basin of South Africa". Lethaia. 40 (2): 125–137. doi:10.1111/j.1502-3931.2007.00011.x. ISSN   0024-1164.
  6. Bain, Andrew Geddes (1845-02-01). "On the Discovery of the Fossil Remains of Bidental and other Reptiles in South Africa". Quarterly Journal of the Geological Society. 1 (1): 317–318. doi:10.1144/GSL.JGS.1845.001.01.72. hdl:2027/uc1.c034667778. ISSN   0370-291X. S2CID   128602890.
  7. Seeley, H. G. (1895). "Researches on the Structure, Organization, and Classification of the Fossil Reptilia. Part IX., Section 4. On the Gomphodontia". Philosophical Transactions of the Royal Society of London B. 186: 1–57. Bibcode:1895RSPTB.186....1S. doi: 10.1098/rstb.1895.0001 . JSTOR   91793.
  8. Broom, R. (January 1906). "V.—On the Permian and Triassic Faunas of South Africa". Geological Magazine. 3 (1): 29–30. Bibcode:1906GeoM....3...29B. doi:10.1017/S001675680012271X. ISSN   1469-5081. S2CID   129265956.
  9. Watson, D. M. S. (May 1914). "II.—The Zones of the Beaufort Beds of the Karroo System in South Africa". Geological Magazine. 1 (5): 203–208. Bibcode:1914GeoM....1..203W. doi:10.1017/S001675680019675X. ISSN   1469-5081. S2CID   130747924.
  10. Broom, R. (1906). V.—On the Permian and Triassic Faunas of South Africa. Geological Magazine, 3(1), 29-30.
  11. Kitching, J. W. (1977). The distribution of the karroo vertebrate fauna: with special reference to certain genera and the bearing of this distribution on the zoning of the Beaufort Beds, Bernard Price Institute for Palaeontological Research, University of the Witwatersrand.
  12. Kitching, J. W. (1984). A reassessment of the biozonation of the Beaufort Group. Paleo News, 4(1), 12-13.
  13. Rubidge, B. S. (ed.) 1995b. Biostratigraphy of the Beaufort Group (Karoo Supergroup). South African Committee of Stratigraphy. Biostratigraphic Series 1. Pretoria, Council for Geoscience.
  14. Merrill, van der Walt; Michael, Day; Bruce, Rubidge; K., Cooper, Antony; Inge, Netterberg (December 2010). "A new GIS-based biozone map of the Beaufort Group (Karoo Supergroup), South Africa". Palaeontologia Africana. ISSN   0078-8554.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  15. Viglietti, Pia; Rubidge, Bruce; Malcom Harris Smith, Roger (2017-03-01). "Revised lithostratigraphy of the upper Permian Balfour and Teekloof formations of the main Karoo Basin, South Africa". South African Journal of Geology. 120: 45–60. doi:10.25131/gssajg.120.1.45.
  16. Viglietti, Pia A.; Smith, Roger M.H.; Angielczyk, Kenneth D.; Kammerer, Christian F.; Fröbisch, Jörg; Rubidge, Bruce S. (2016-01-01). "The Daptocephalus Assemblage Zone (Lopingian), South Africa: A proposed biostratigraphy based on a new compilation of stratigraphic ranges". Journal of African Earth Sciences. 113: 153–164. Bibcode:2016JAfES.113..153V. doi:10.1016/j.jafrearsci.2015.10.011. ISSN   1464-343X.
  17. Viglietti, Pia A.; Smith, Roger M.H.; Rubidge, Bruce S. (2018-02-01). "Changing palaeoenvironments and tetrapod populations in the Daptocephalus Assemblage Zone (Karoo Basin, South Africa) indicate early onset of the Permo-Triassic mass extinction". Journal of African Earth Sciences. 138: 102–111. Bibcode:2018JAfES.138..102V. doi:10.1016/j.jafrearsci.2017.11.010. ISSN   1464-343X.
  18. Smith, R.M.H. (1995-08-01). "Changing fluvial environments across the Permian-Triassic boundary in the Karoo Basin, South Africa and possible causes of tetrapod extinctions". Palaeogeography, Palaeoclimatology, Palaeoecology. 117 (1–2): 81–104. Bibcode:1995PPP...117...81S. doi:10.1016/0031-0182(94)00119-S. ISSN   0031-0182.
  19. Hiller, Norton; Stavrakis, Nicholas (1984-02-01). "Permo-Triassic fluvial systems in the southeastern Karoo Basin, South Africa". Palaeogeography, Palaeoclimatology, Palaeoecology. 45 (1): 1–21. Bibcode:1984PPP....45....1H. doi:10.1016/0031-0182(84)90106-8. ISSN   0031-0182.
  20. Viglietti, Pia A.; Smith, Roger M.H.; Compton, John S. (2013-12-15). "Origin and palaeoenvironmental significance of Lystrosaurus bonebeds in the earliest Triassic Karoo Basin, South Africa". Palaeogeography, Palaeoclimatology, Palaeoecology. 392: 9–21. Bibcode:2013PPP...392....9V. doi:10.1016/j.palaeo.2013.08.015. ISSN   0031-0182.
  21. Viglietti, Pia A.; Smith, Roger M.H.; Rubidge, Bruce S. (2018-02-01). "Changing palaeoenvironments and tetrapod populations in the Daptocephalus Assemblage Zone (Karoo Basin, South Africa) indicate early onset of the Permo-Triassic mass extinction". Journal of African Earth Sciences. 138: 102–111. Bibcode:2018JAfES.138..102V. doi:10.1016/j.jafrearsci.2017.11.010. ISSN   1464-343X.
  22. Smith, R., Rubidge, B., & Van der Walt, M. (2012). Therapsid biodiversity patterns and paleoenvironments of the Karoo Basin, South Africa. Forerunners of Mammals: Radiation, Histology, Biology. Indiana University Press, Indianapolis, Indiana, 30-62.
  23. Viglietti, Pia A.; Smith, Roger M.H.; Compton, John S. (2013-12-15). "Origin and palaeoenvironmental significance of Lystrosaurus bonebeds in the earliest Triassic Karoo Basin, South Africa". Palaeogeography, Palaeoclimatology, Palaeoecology. 392: 9–21. Bibcode:2013PPP...392....9V. doi:10.1016/j.palaeo.2013.08.015. ISSN   0031-0182.
  24. Smith, Roger M.H.; Botha-Brink, Jennifer (2014-02-15). "Anatomy of a mass extinction: Sedimentological and taphonomic evidence for drought-induced die-offs at the Permo-Triassic boundary in the main Karoo Basin, South Africa". Palaeogeography, Palaeoclimatology, Palaeoecology. 396: 99–118. doi:10.1016/j.palaeo.2014.01.002. ISSN   0031-0182.
  25. Viglietti, Pia A.; Smith, Roger M.H.; Compton, John S. (2013-12-15). "Origin and palaeoenvironmental significance of Lystrosaurus bonebeds in the earliest Triassic Karoo Basin, South Africa". Palaeogeography, Palaeoclimatology, Palaeoecology. 392: 9–21. Bibcode:2013PPP...392....9V. doi:10.1016/j.palaeo.2013.08.015. ISSN   0031-0182.
  26. Smith, R.M.H. (1995-08-01). "Changing fluvial environments across the Permian-Triassic boundary in the Karoo Basin, South Africa and possible causes of tetrapod extinctions". Palaeogeography, Palaeoclimatology, Palaeoecology. 117 (1–2): 81–104. Bibcode:1995PPP...117...81S. doi:10.1016/0031-0182(94)00119-S. ISSN   0031-0182.
  27. Smith, Roger M.H.; Botha-Brink, Jennifer (2014-02-15). "Anatomy of a mass extinction: Sedimentological and taphonomic evidence for drought-induced die-offs at the Permo-Triassic boundary in the main Karoo Basin, South Africa". Palaeogeography, Palaeoclimatology, Palaeoecology. 396: 99–118. doi:10.1016/j.palaeo.2014.01.002. ISSN   0031-0182.
  28. Viglietti, Pia A.; Smith, Roger M.H.; Rubidge, Bruce S. (2018-02-01). "Changing palaeoenvironments and tetrapod populations in the Daptocephalus Assemblage Zone (Karoo Basin, South Africa) indicate early onset of the Permo-Triassic mass extinction". Journal of African Earth Sciences. 138: 102–111. Bibcode:2018JAfES.138..102V. doi:10.1016/j.jafrearsci.2017.11.010. ISSN   1464-343X.
  29. Botha-Brink, Jennifer; Huttenlocker, Adam K.; Modesto, Sean P. (2013-09-21), "Vertebrate Paleontology of Nooitgedacht 68: A Lystrosaurus maccaigi-Rich Permo-Triassic Boundary Locality in South Africa", Early Evolutionary History of the Synapsida, Vertebrate Paleobiology and Paleoanthropology, Springer Netherlands, pp. 289–304, doi:10.1007/978-94-007-6841-3_17, ISBN   9789400768406
  30. BOTHA, JENNIFER; SMITH, ROGER M. H. (2007-04-08). "Lystrosaurus species composition across the Permo-Triassic boundary in the Karoo Basin of South Africa". Lethaia. 40 (2): 125–137. doi:10.1111/j.1502-3931.2007.00011.x. ISSN   0024-1164.
  31. Viglietti, Pia A.; Smith, Roger M.H.; Compton, John S. (2013-12-15). "Origin and palaeoenvironmental significance of Lystrosaurus bonebeds in the earliest Triassic Karoo Basin, South Africa". Palaeogeography, Palaeoclimatology, Palaeoecology. 392: 9–21. Bibcode:2013PPP...392....9V. doi:10.1016/j.palaeo.2013.08.015. ISSN   0031-0182.
  32. Smith, Roger M.H.; Botha-Brink, Jennifer (2014-02-15). "Anatomy of a mass extinction: Sedimentological and taphonomic evidence for drought-induced die-offs at the Permo-Triassic boundary in the main Karoo Basin, South Africa". Palaeogeography, Palaeoclimatology, Palaeoecology. 396: 99–118. doi:10.1016/j.palaeo.2014.01.002. ISSN   0031-0182.
  33. Hammer, W. R.; Cosgriff, J. W. (1981). "Myosaurus gracilis, an Anomodont Reptile from the Lower Triassic of Antarctica and South Africa". Journal of Paleontology. 55 (2): 410–424. JSTOR   1304227.
  34. Huttenlocker, Adam K.; Botha-Brink, Jennifer (2013). "Body size and growth patterns in the therocephalian Moschorhinus kitchingi (Therapsida: Eutheriodontia) before and after the end-Permian extinction in South Africa". Paleobiology. 39 (2): 253–277. doi:10.1666/12020. ISSN   0094-8373. S2CID   86490421.
  35. Smith, Roger; Botha, Jennifer (2005-09-01). "The recovery of terrestrial vertebrate diversity in the South African Karoo Basin after the end-Permian extinction". Comptes Rendus Palevol. 4 (6–7): 623–636. doi:10.1016/j.crpv.2005.07.005. ISSN   1631-0683.
  36. Jasinoski, Sandra C.; Abdala, Fernando (2017-01-10). "Aggregations and parental care in the Early Triassic basal cynodontsGalesaurus planicepsandThrinaxodon liorhinus". PeerJ. 5: e2875. doi: 10.7717/peerj.2875 . ISSN   2167-8359. PMC   5228509 . PMID   28097072.
  37. Butler, Elize; Abdala, Fernando; Botha-Brink, Jennifer (2018-06-07). "Postcranial morphology of the Early Triassic epicynodont Galesaurus planiceps (Owen) from the Karoo Basin, South Africa". Papers in Palaeontology. 5: 1–32. doi: 10.1002/spp2.1220 .
  38. Gaetano, Leandro; Mocke, Helke; Abdala, Fernando (2018-04-30). "The postcranial anatomy of Diademodon tetragonus (Cynodontia, Cynognathia)". Journal of Vertebrate Paleontology. 38 (3): e1451872. doi:10.1080/02724634.2018.1451872. S2CID   90344418.
  39. Day, Michael; Abdala, Fernando; Golubev, Valeriy; Sennikov, Andrey; Rubidge, Bruce (2017-12-19). "New insights on the correlation of Permo-Triassic terrestrial faunas of South Africa with those of European Russia". ResearchGate.
  40. Carlos, Cisneros, Juan (April 2008). "Taxonomic status of the reptile genus Procolophon from the Gondwanan Triassic". Palaeontologia Africana. ISSN   0078-8554.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  41. Reisz, Robert R.; Scott, Diane (2002-07-08). "Owenetta kitchingorum, sp. nov., a small parareptile (Procolophonia: Owenettidae) from the Lower Triassic of South Africa". Journal of Vertebrate Paleontology. 22 (2): 244–256. doi:10.1671/0272-4634(2002)022[0244:oksnas]2.0.co;2. ISSN   0272-4634. S2CID   52035390.
  42. Roopnarine, Peter D.; Angielczyk, Kenneth D. (2011-08-24). "The evolutionary palaeoecology of species and the tragedy of the commons". Biology Letters. 8 (1): 147–150. doi:10.1098/rsbl.2011.0662. ISSN   1744-9561. PMC   3259974 . PMID   21865241.
  43. Schoch, Rainer R.; Rubidge, Bruce S. (2005-09-30). "The amphibamidMicropholisfrom the Lystrosaurus Assemblage Zone of South africa". Journal of Vertebrate Paleontology. 25 (3): 502–522. doi:10.1671/0272-4634(2005)025[0502:tamftl]2.0.co;2. ISSN   0272-4634. S2CID   85979872.
  44. Ross, Damiani; Johann, Neveling; Sean, Modesto; Adam, Yates (2003). "Barendskraal, a diverse amniote locality from the Lystrosaurus Assemblage Zone, Early Triassic of South Africa". Palaeontologia Africana. ISSN   0078-8554.
  45. Colbert, Edwin Harris (June 24, 1987). "The Triassic reptile Prolacerta in Antarctica". American Museum Novitates (2882). hdl: 2246/5211 .
  46. Ezcurra, Martín D.; Butler, Richard J. (2015-04-24). "Post-hatchling cranial ontogeny in the Early Triassic diapsid reptile Proterosuchus fergusi". Journal of Anatomy. 226 (5): 387–402. doi:10.1111/joa.12300. ISSN   0021-8782. PMC   4450940 . PMID   25913624.
  47. Groenewald, G. H. (1991-09-23). "Burrow casts from the Lystrosaurus-Procolophon Assemblage-zone, Karoo Sequence, South Africa". Koedoe. 34 (1): 13–22. doi: 10.4102/koedoe.v34i1.409 . ISSN   2071-0771.
  48. MODESTO, S. P.; BOTHA-BRINK, J. (2010-04-01). "A Burrow Cast with Lystrosaurus Skeletal Remains from the Lower Triassic of South Africa". PALAIOS. 25 (4): 274–281. Bibcode:2010Palai..25..274M. doi:10.2110/palo.2009.p09-077r. ISSN   0883-1351. S2CID   128414370.
  49. Botha-Brink, Jennifer (2017-10-16). "Burrowing in Lystrosaurus: preadaptation to a postextinction environment?". Journal of Vertebrate Paleontology. 37 (5): e1365080. doi:10.1080/02724634.2017.1365080. S2CID   89742527.
  50. Broom, Robert (1913). "On some fishes from the Lower and Middle Karroo, S. Africa". Annals of the South African Museum. 12: 1–5.
  51. "Magnetostratigraphy - Background to stratigraphy across the PTB in Russia". Archived from the original on 2019-02-16. Retrieved 2019-03-15.
  52. Ezcurra, 2016, p.8

Bibliography