Early Triassic

Last updated
Early/Lower Triassic
251.9 – 247.2 Ma
O
S
D
C
P
T
J
K
Pg
N
Stadtroda Sandstein.jpg
Sandstone from the Lower Triassic Series
Chronology
Etymology
Chronostratigraphic nameLower Triassic
Geochronological nameEarly Triassic
Name formalityFormal
Usage information
Celestial body Earth
Regional usageGlobal (ICS)
Time scale(s) usedICS Time Scale
Definition
Chronological unit Epoch
Stratigraphic unit Series
Time span formalityFormal
Lower boundary definition FAD of the Conodont Hindeodus parvus
Lower boundary GSSP Meishan, Zhejiang, China
31°04′47″N119°42′21″E / 31.0798°N 119.7058°E / 31.0798; 119.7058
Lower GSSP ratified2001 [6]
Upper boundary definitionNot formally defined
Upper boundary definition candidates
Upper boundary GSSP candidate section(s)

The Early Triassic is the first of three epochs of the Triassic Period of the geologic timescale. It spans the time between 251.9 Ma and 247.2 Ma (million years ago). Rocks from this epoch are collectively known as the Lower Triassic Series, which is a unit in chronostratigraphy. The Early Triassic is the oldest epoch of the Mesozoic Era. It is preceded by the Lopingian Epoch (late Permian, Paleozoic Era) and followed by the Middle Triassic Epoch. The Early Triassic is divided into the Induan and Olenekian ages. The Induan is subdivided into the Griesbachian and Dienerian subages and the Olenekian is subdivided into the Smithian and Spathian subages. [7]

Contents

The Lower Triassic series is coeval with the Scythian Stage, which is today not included in the official timescales but can be found in older literature. In Europe, most of the Lower Triassic is composed of Buntsandstein, a lithostratigraphic unit of continental red beds.[ citation needed ]

The Early Triassic and partly also the Middle Triassic span the interval of biotic recovery from the Permian-Triassic extinction event, the most severe mass extinction event in Earth's history. [8] [9] [10] A second extinction event, the Smithian-Spathian boundary event, occurred during the Olenekian. [11] A third extinction event occurred at the Olenekian-Anisian boundary, marking the end of the Early Triassic epoch. [12]

Early Triassic climate

The Putorana Plateau is composed of basalt rocks of the Siberian Traps. Tishina ozera Diupkun.jpg
The Putorana Plateau is composed of basalt rocks of the Siberian Traps.

The climate during the Early Triassic Epoch (especially in the interior of the supercontinent Pangaea) was generally arid, rainless and dry and deserts were widespread; however the poles possessed a temperate climate. The pole-to-equator temperature gradient was temporally flat during the Early Triassic and may have allowed tropical species to extend their distribution poleward. This is evidenced by the global distribution of ammonoids. [13] The extremely hot ocean temperatures facilitated extremely powerful hurricanes that frequently hit the coast of North China. [14]

The mostly hot climate of the Early Triassic may have been caused by late volcanic eruptions of the Siberian Traps, [15] [8] which had probably triggered the Permian-Triassic extinction event and accelerated the rate of global warming into the Triassic. [16] Studies suggest that Early Triassic climate was very volatile, punctuated by a number of relatively rapid global temperature changes, marine anoxic events, and carbon cycle disturbances, [17] [18] [19] which led to subsequent extinction events in the aftermath of the Permian-Triassic extinction event. [20] [21] [22] On the other hand, an alternative hypothesis proposes these Early Triassic climatic perturbations and biotic upheavals that inhibited the recovery of life following the P-T mass extinction to have been linked to forcing driven by changes in the Earth's obliquity defined by a roughly 32.8 thousand year periodicity with strong 1.2 million year modulations. According to proponents of this hypothesis, radiometric dating indicates that major activity from the Siberian Traps ended very shortly after the end-Permian extinction and did not span the entire Early Triassic epoch, thus not being the primary culprit for the climatic changes throughout this epoch. [23]

Early Triassic life

Fauna and flora

Pleuromeia represented a dominant element of global floras during the Early Triassic Pleuromeia restoration.png
Pleuromeia represented a dominant element of global floras during the Early Triassic

The Triassic Period opened in the aftermath of the Permian–Triassic extinction event. The massive extinctions that ended the Permian Period (and with that the Paleozoic Era) caused extreme hardships for the surviving species.

The Early Triassic Epoch saw the biotic recovery of life after the biggest mass extinction event of the past, which took millions of years due to the severity of the event and the harsh Early Triassic climate. [24] Many types of corals, brachiopods, molluscs, echinoderms, and other invertebrates had disappeared. The Permian vegetation, which was dominated by Glossopteris in the Southern Hemisphere, ceased to exist. [25] Other groups, such as Actinopterygii, appear to have been less affected by this extinction event [26] and body size was not a selective factor during the extinction event. [27] [28] Animals that were most successful in the Early Triassic were those with high metabolisms. [29] Different patterns of recovery are evident on land and in the sea. Early Triassic faunas lacked biodiversity and were relatively homogeneous due to the effects of the extinction. The ecological recovery on land took 30 million years, well into the Late Triassic. [30] Two Early Triassic lagerstätten stand out due to their exceptionally high biodiversity, the Dienerian aged Guiyang biota [31] and the earliest Spathian aged Paris biota. [32]

Terrestrial biota

The most common land vertebrate was the small herbivorous synapsid Lystrosaurus . Often interpreted as a disaster taxon (although this view was questioned [33] ), Lystrosaurus had a wide range across Pangea. In the southern part of the supercontinent, it co-occurred with the non-mammalian cynodonts Galesaurus and Thrinaxodon , early relatives of mammals. First archosauriforms appeared, such as Erythrosuchus (Olenekian-Ladinian). [34] This group includes the ancestors of crocodiles and dinosaurs (including birds). Fossilized foot prints of dinosauromorphs are known from the Olenekian. [35] The Early Triassic entomofauna is very poorly understood because of the paucity of insect fossils from this epoch. [36]

The flora was gymnosperm-dominated at the onset of the Triassic, but changed rapidly and became lycopod-dominated (e.g. Pleuromeia ) during the Griesbachian-Dienerian ecological crisis. This change coincided with the extinction of the Permian Glossopteris flora. [25] In the Spathian subage, the flora changed back to gymnosperm and pteridophyte dominated. [37] These shifts reflect global changes in precipitation and temperature. [25] [20] Floral diversity was overall very low during the Early Triassic, as plant life had yet to fully recover from the Permian-Triassic extinction. [38]

Microbially induced sedimentary structures (MISS) are common in the fossil record of North China in the immediate aftermath of the Permian-Triassic extinction, indicating that microbial mats dominated local terrestrial ecosystems following the Permian-Triassic boundary. The regional prevalence of MISS is attributable to a decrease in bioturbation and grazing pressure as a result of aridification and temperature increase. [39] MISS have also been reported from Early Triassic fossil deposits in Arctic Canada. [40] The disappearance of MISS later in the Early Triassic has been interpreted as a signal of increased bioturbation and recovery of terrestrial ecosystems. [39]

Aquatic biota

In the oceans, the most common Early Triassic hard-shelled marine invertebrates were bivalves, gastropods, ammonoids, echinoids, and a few articulate brachiopods. Conodonts experienced a revival in diversity following a nadir during the Permian. [41] The first oysters ( Liostrea ) appeared in the Early Triassic. They grew on the shells of living ammonoids as epizoans. [42] Microbial reefs were common, possibly due to lack of competition with metazoan reef builders as a result of the extinction. [43] However, transient metazoan reefs reoccurred during the Olenekian wherever permitted by environmental conditions. [44] Ammonoids show blooms followed by extinctions during the Early Triassic. [45]

Aquatic vertebrates diversified after the extinction:

See also

Related Research Articles

<span class="mw-page-title-main">Permian</span> Sixth and last period of the Paleozoic Era 299–252 million years ago

The Permian is a geologic period and stratigraphic system which spans 47 million years from the end of the Carboniferous Period 298.9 million years ago (Mya), to the beginning of the Triassic Period 251.902 Mya. It is the last period of the Paleozoic Era; the following Triassic Period belongs to the Mesozoic Era. The concept of the Permian was introduced in 1841 by geologist Sir Roderick Murchison, who named it after the region of Perm in Russia.

<span class="mw-page-title-main">Permian–Triassic extinction event</span> Earths most severe extinction event

Approximately 251.9 million years ago, the Permian–Triassicextinction event forms the boundary between the Permian and Triassic geologic periods, and with them the Paleozoic and Mesozoic eras. It is the Earth's most severe known extinction event, with the extinction of 57% of biological families, 83% of genera, 81% of marine species and 70% of terrestrial vertebrate species. It is also the greatest known mass extinction of insects. It is the greatest of the "Big Five" mass extinctions of the Phanerozoic. There is evidence for one to three distinct pulses, or phases, of extinction.

<span class="mw-page-title-main">Triassic</span> First period of the Mesozoic Era 252–201 million years ago

The Triassic is a geologic period and system which spans 50.5 million years from the end of the Permian Period 251.902 million years ago (Mya), to the beginning of the Jurassic Period 201.4 Mya. The Triassic is the first and shortest period of the Mesozoic Era. Both the start and end of the period are marked by major extinction events. The Triassic Period is subdivided into three epochs: Early Triassic, Middle Triassic and Late Triassic.

<span class="mw-page-title-main">Triassic–Jurassic extinction event</span> Mass extinction ending the Triassic period

The Triassic–Jurassic (Tr-J) extinction event (TJME), often called the end-Triassic extinction, was a Mesozoic extinction event that marks the boundary between the Triassic and Jurassic periods, 201.4 million years ago, and is one of the top five major extinction events of the Phanerozoic eon, profoundly affecting life on land and in the oceans. In the seas, the entire class of conodonts and 23–34% of marine genera disappeared. On land, all archosauromorphs other than crocodylomorphs, pterosaurs, and dinosaurs became extinct; some of the groups which died out were previously abundant, such as aetosaurs, phytosaurs, and rauisuchids. Some remaining non-mammalian therapsids and many of the large temnospondyl amphibians had become extinct prior to the Jurassic as well. However, there is still much uncertainty regarding a connection between the Tr-J boundary and terrestrial vertebrates, due to a lack of terrestrial fossils from the Rhaetian (latest) stage of the Triassic. What was left fairly untouched were plants, crocodylomorphs, dinosaurs, pterosaurs and mammals; this allowed the dinosaurs, pterosaurs, and crocodylomorphs to become the dominant land animals for the next 135 million years.

<span class="mw-page-title-main">Late Devonian extinction</span> One of the five most severe extinction events in the history of the Earths biota

The Late Devonian extinction consisted of several extinction events in the Late Devonian Epoch, which collectively represent one of the five largest mass extinction events in the history of life on Earth. The term primarily refers to a major extinction, the Kellwasser event, also known as the Frasnian-Famennian extinction, which occurred around 372 million years ago, at the boundary between the Frasnian stage and the Famennian stage, the last stage in the Devonian Period. Overall, 19% of all families and 50% of all genera became extinct. A second mass extinction called the Hangenberg event, also known as the end-Devonian extinction, occurred 359 million years ago, bringing an end to the Famennian and Devonian, as the world transitioned into the Carboniferous Period.

In the geologic timescale, the Capitanian is an age or stage of the Permian. It is also the uppermost or latest of three subdivisions of the Guadalupian Epoch or Series. The Capitanian lasted between 264.28 and 259.51 million years ago. It was preceded by the Wordian and followed by the Wuchiapingian.

<span class="mw-page-title-main">Carnian</span> First age of the Late Triassic epoch

The Carnian is the lowermost stage of the Upper Triassic Series. It lasted from 237 to 227 million years ago (Ma). The Carnian is preceded by the Ladinian and is followed by the Norian. Its boundaries are not characterized by major extinctions or biotic turnovers, but a climatic event occurred during the Carnian and seems to be associated with important extinctions or biotic radiations. Another extinction occurred at the Carnian-Norian boundary, ending the Carnian age.

<span class="mw-page-title-main">Olenekian</span> Age in the Early Triassic epoch

In the geologic timescale, the Olenekian is an age in the Early Triassic epoch; in chronostratigraphy, it is a stage in the Lower Triassic series. It spans the time between 251.2 Ma and 247.2 Ma. The Olenekian is sometimes divided into the Smithian and the Spathian subages or substages. The Olenekian follows the Induan and is followed by the Anisian.

<span class="mw-page-title-main">Middle Triassic</span> Second epoch of the Triassic period

In the geologic timescale, the Middle Triassic is the second of three epochs of the Triassic period or the middle of three series in which the Triassic system is divided in chronostratigraphy. The Middle Triassic spans the time between 247.2 Ma and 237 Ma. It is preceded by the Early Triassic Epoch and followed by the Late Triassic Epoch. The Middle Triassic is divided into the Anisian and Ladinian ages or stages.

The Late Triassic is the third and final epoch of the Triassic Period in the geologic time scale, spanning the time between 237 Ma and 201.4 Ma. It is preceded by the Middle Triassic Epoch and followed by the Early Jurassic Epoch. The corresponding series of rock beds is known as the Upper Triassic. The Late Triassic is divided into the Carnian, Norian and Rhaetian ages.

<span class="mw-page-title-main">Induan</span> First age of the Early Triassic epoch

The Induan is the first age of the Early Triassic epoch in the geologic timescale, or the lowest stage of the Lower Triassic series in chronostratigraphy. It spans the time between 251.9 Ma and 251.2 Ma. The Induan is sometimes divided into the Griesbachian and the Dienerian subages or substages. The Induan is preceded by the Changhsingian and is followed by the Olenekian.

<i>Lystrosaurus</i> Assemblage Zone

The Lystrosaurus Assemblage Zone is a tetrapod assemblage zone or biozone which correlates to the upper Adelaide and lower Tarkastad Subgroups of the Beaufort Group, a fossiliferous and geologically important geological Group of the Karoo Supergroup in South Africa. This biozone has outcrops in the south central Eastern Cape and in the southern and northeastern Free State. The Lystrosaurus Assemblage Zone is one of eight biozones found in the Beaufort Group, and is considered to be Early Triassic in age.

The Carnian pluvial episode (CPE), often called the Carnian pluvial event, was an interval of major change in global climate that was synchronous with significant changes in Earth's biota both in the sea and on land. It occurred during the latter part of the Carnian Stage, a subdivision of the late Triassic period, and lasted for perhaps 1–2 million years.

The Vikinghøgda Formation is a geologic formation in Svalbard, Norway. It preserves fossils dating back to the Early Triassic (Griesbachian-Spathian) period. It is split into three members, from oldest to youngest: the Deltadalen Member (Induan), Lusitaniadalen Member (Smithian), and Vendomdalen Member (Spathian). The formation can be found in central Spitsbergen, southern Spitsbergen, as well as the smaller islands of Barentsøya and Edgeøya. The type locality is positioned in the vicinity of Vikinghøgda and Sticky Keep, two low peaks along the southeast edge of Sassendalen in Spitsbergen. The two upper members of the Vikinghøgda Formation were previously grouped together as the Sticky Keep Formation.

The Werfen Formation is a geologic formation in the Southern Limestone Alps and Dinaric Alps of Austria, Bosnia and Herzegovina, and Italy. It preserves fossils dating back to the Triassic period.

<i>Cartorhynchus</i> Extinct genus of reptiles

Cartorhynchus is an extinct genus of early ichthyosauriform marine reptile that lived during the Early Triassic epoch, about 248 million years ago. The genus contains a single species, Cartorhynchus lenticarpus, named in 2014 by Ryosuke Motani and colleagues from a single nearly-complete skeleton found near Chaohu, Anhui Province, China. Along with its close relative Sclerocormus, Cartorhynchus was part of a diversification of marine reptiles that occurred suddenly during the Spathian substage, soon after the devastating Permian-Triassic extinction event, but they were subsequently driven to extinction by volcanism and sea level changes by the Middle Triassic.

The Lilliput effect is a decrease in body size in animal species that have survived a major extinction. There are several hypotheses as to why these patterns appear in the fossil record, some of which are: the survival of small taxa, dwarfing of larger lineages, and the evolutionary miniaturization from larger ancestral stocks. The term was coined in 1993 by Adam Urbanek in his paper concerning the extinction of graptoloids and is derived from the island of Lilliput inhabited by a miniature race of people in Gulliver’s Travels. This size decrease may just be a temporary phenomenon restricted to the survival period of the extinction event. In 2019 Atkinson et al. coined the term the Brobdingnag effect to describe a related phenomenon operating in the opposite direction, whereby new species evolving after the Triassic-Jurassic mass extinction originated at small body sizes before undergoing a size increase. The term is also from Gulliver's Travels where Brobnignag is a land inhabited by a race of giants.

<span class="mw-page-title-main">Capitanian mass extinction event</span> Extinction event around 260 million years ago

The Capitanian mass extinction event, also known as the end-Guadalupian extinction event, the Guadalupian-Lopingian boundary mass extinction, the pre-Lopingian crisis, or the Middle Permian extinction, was an extinction event that predated the end-Permian extinction event. The mass extinction occurred during a period of decreased species richness and increased extinction rates near the end of the Middle Permian, also known as the Guadalupian epoch. It is often called the end-Guadalupian extinction event because of its initial recognition between the Guadalupian and Lopingian series; however, more refined stratigraphic study suggests that extinction peaks in many taxonomic groups occurred within the Guadalupian, in the latter half of the Capitanian age. The extinction event has been argued to have begun around 262 million years ago with the Late Guadalupian crisis, though its most intense pulse occurred 259 million years ago in what is known as the Guadalupian-Lopingian boundary event.

The Paris biota is an exceptionally diverse Early Triassic fossil assemblage described in 2017 from the Lower Shale Member of the Thaynes Group. It was first discovered in Paris Canyon, west of the town of Paris in Bear Lake County, southeastern Idaho, United States. This biota was later also found in coeval and slightly younger beds in northeastern Nevada and Bear Lake and Caribou counties, southeastern Idaho.

References

  1. Widmann, Philipp; Bucher, Hugo; Leu, Marc; et al. (2020). "Dynamics of the Largest Carbon Isotope Excursion During the Early Triassic Biotic Recovery". Frontiers in Earth Science. 8 (196): 196. Bibcode:2020FrEaS...8..196W. doi: 10.3389/feart.2020.00196 .
  2. McElwain, J. C.; Punyasena, S. W. (2007). "Mass extinction events and the plant fossil record". Trends in Ecology & Evolution. 22 (10): 548–557. doi:10.1016/j.tree.2007.09.003. PMID   17919771.
  3. Retallack, G. J.; Veevers, J.; Morante, R. (1996). "Global coal gap between Permian–Triassic extinctions and middle Triassic recovery of peat forming plants". GSA Bulletin. 108 (2): 195–207. Bibcode:1996GSAB..108..195R. doi:10.1130/0016-7606(1996)108<0195:GCGBPT>2.3.CO;2 . Retrieved 2007-09-29.
  4. Payne, J. L.; Lehrmann, D. J.; Wei, J.; Orchard, M. J.; Schrag, D. P.; Knoll, A. H. (2004). "Large Perturbations of the Carbon Cycle During Recovery from the End-Permian Extinction". Science. 305 (5683): 506–9. Bibcode:2004Sci...305..506P. doi:10.1126/science.1097023. PMID   15273391. S2CID   35498132.
  5. Ogg, James G.; Ogg, Gabi M.; Gradstein, Felix M. (2016). "Triassic". A Concise Geologic Time Scale: 2016. Elsevier. pp. 133–149. ISBN   978-0-444-63771-0.
  6. Hongfu, Yin; Kexin, Zhang; Jinnan, Tong; Zunyi, Yang; Shunbao, Wu (June 2001). "The Global Stratotype Section and Point (GSSP) of the Permian-Triassic Boundary" (PDF). Episodes. 24 (2): 102–114. doi: 10.18814/epiiugs/2001/v24i2/004 . Archived (PDF) from the original on 28 August 2021. Retrieved 8 December 2020.
  7. Tozer, Edward T. (1965). Lower Triassic stages and ammonoid zones of arctic Canada. Geological Survey of Canada. OCLC   606894884.
  8. 1 2 Payne, Jonathan L.; Kump, Lee R. (15 April 2007). "Evidence for recurrent Early Triassic massive volcanism from quantitative interpretation of carbon isotope fluctuations". Earth and Planetary Science Letters . 256 (1–2): 264–277. Bibcode:2007E&PSL.256..264P. doi:10.1016/j.epsl.2007.01.034. Archived from the original on 13 January 2023. Retrieved 12 January 2023.
  9. Feng, Xueqian; Chen, Zhong-Qiang; Woods, Adam; Fang, Yuheng (15 November 2017). "A Smithian (Early Triassic) ichnoassemblage from Lichuan, Hubei Province, South China: Implications for biotic recovery after the latest Permian mass extinction". Palaeogeography, Palaeoclimatology, Palaeoecology . 486: 123–141. Bibcode:2017PPP...486..123F. doi:10.1016/j.palaeo.2017.03.003. Archived from the original on 21 January 2023. Retrieved 20 January 2023.
  10. Matamales-Andreu, Rafel; Peñalver, Enrique; Mujal, Eudald; Oms, Oriol; Scholze, Frank; Juárez, Josep; Galobart, Àngel; Fortuny, Josep (November 2021). "Early–Middle Triassic fluvial ecosystems of Mallorca (Balearic Islands): Biotic communities and environmental evolution in the equatorial western peri-Tethys". Earth-Science Reviews . 222: 103783. Bibcode:2021ESRv..22203783M. doi:10.1016/j.earscirev.2021.103783. S2CID   238730784. Archived from the original on 19 December 2022. Retrieved 8 December 2022.
  11. Widmann, Philipp; Bucher, Hugo; Leu, Marc; Vennemann, Torsten; Bagherpour, Borhan; Schneebeli-Hermann, Elke; Goudemand, Nicolas; Schaltegger, Urs (2020). "Dynamics of the Largest Carbon Isotope Excursion During the Early Triassic Biotic Recovery". Frontiers in Earth Science. 8 (196): 196. Bibcode:2020FrEaS...8..196W. doi: 10.3389/feart.2020.00196 .
  12. Song, Haijin; Song, Huyue; Tong, Jinnan; Gordon, Gwyneth W.; Wignall, Paul B.; Tian, Li; Zheng, Wang; Algeo, Thomas J.; Liang, Lei; Bai, Ruoyu; Wu, Kui; Anbar, Ariel D. (20 February 2021). "Conodont calcium isotopic evidence for multiple shelf acidification events during the Early Triassic". Chemical Geology . 562: 120038. Bibcode:2021ChGeo.56220038S. doi:10.1016/j.chemgeo.2020.120038. S2CID   233915627. Archived from the original on 12 December 2022. Retrieved 12 December 2022.
  13. Brayard, Arnaud; Bucher, Hugo; Escarguel, Gilles; Fluteau, Frédéric; Bourquin, Sylvie; Galfetti, Thomas (September 2006). "The Early Triassic ammonoid recovery: Paleoclimatic significance of diversity gradients". Palaeogeography, Palaeoclimatology, Palaeoecology . 239 (3–4): 374–395. Bibcode:2006PPP...239..374B. doi:10.1016/j.palaeo.2006.02.003.
  14. Ji, Kaixuan; Wignall, Paul B.; Peakall, Jeff; Tong, Jinnan; Chu, Daoliang; Pruss, Sara B. (1 June 2021). Fielding, Christopher (ed.). "Unusual intraclast conglomerates in a stormy, hot‐house lake: The Early Triassic North China Basin". Sedimentology. 68 (7): 3385–3404. doi:10.1111/sed.12903. ISSN   0037-0746 . Retrieved 9 March 2024 via Wiley Online Library.
  15. Borruel-Abadía, Violeta; López-Gómez, José; De la Horra, Raúl; Galán-Abellán, Belén; Barrenechea, José; Arche, Alfredo; Ronchi, Ausonio; Gretter, Nicola; Marzo, Mariano (15 December 2015). "Climate changes during the Early–Middle Triassic transition in the E. Iberian plate and their palaeogeographic significance in the western Tethys continental domain". Palaeogeography, Palaeoclimatology, Palaeoecology . 440: 671–689. Bibcode:2015PPP...440..671B. doi:10.1016/j.palaeo.2015.09.043. hdl: 10261/124328 . Archived from the original on 27 November 2022. Retrieved 8 December 2022.
  16. Preto, Nereo; Kustatscher, Evelyn; Wignall, Paul B. (April 2010). "Triassic climates — State of the art and perspectives". Palaeogeography, Palaeoclimatology, Palaeoecology . 290 (1–4): 1–10. Bibcode:2010PPP...290....1P. doi:10.1016/j.palaeo.2010.03.015.
  17. Schneebeli-Hermann, Elke (December 2020). "Regime Shifts in an Early Triassic Subtropical Ecosystem". Frontiers in Earth Science . 8: 588696. Bibcode:2020FrEaS...8..608S. doi: 10.3389/feart.2020.588696 .
  18. Li, Hanxiao; Dong, Hanxinshuo; Jiang, Haishui; Wignall, Paul B.; Chen, Yanlong; Zhang, Muhui; Ouyang, Zhumin; Wu, Xianlang; Wu, Baojin; Zhang, Zaitian; Lai, Xulong (1 September 2022). "Integrated conodont biostratigraphy and δ13Ccarb records from end Permian to Early Triassic at Yiwagou Section, Gansu Province, northwestern China and their implications". Palaeogeography, Palaeoclimatology, Palaeoecology . 601: 111079. Bibcode:2022PPP...60111079L. doi:10.1016/j.palaeo.2022.111079. S2CID   249144143. Archived from the original on 26 December 2022. Retrieved 26 December 2022.
  19. Lehrmann, Daniel J.; Stepchinski, Leanne; Altiner, Demir; Orchard, Michael J.; Montgomery, Paul; Enos, Paul; Ellwood, Brooks B.; Bowring, Samuel A.; Ramezani, Jahandar; Wang, Hongmei; Wei, Jiayong; Yu, Meiyi; Griffiths, James W.; Minzoni, Marcello; Schaal, Ellen K.; Li, Xiaowei; Meyer, Katja M.; Payne, Jonathan L. (15 August 2015). "An integrated biostratigraphy (conodonts and foraminifers) and chronostratigraphy (paleomagnetic reversals, magnetic susceptibility, elemental chemistry, carbon isotopes and geochronology) for the Permian–Upper Triassic strata of Guandao section, Nanpanjiang Basin, south China". Journal of Asian Earth Sciences . 108: 117–135. Bibcode:2015JAESc.108..117L. doi: 10.1016/j.jseaes.2015.04.030 . Archived from the original on 1 July 2023. Retrieved 30 June 2023.
  20. 1 2 Romano, Carlo; Goudemand, Nicolas; Vennemann, Torsten W.; Ware, David; Schneebeli-Hermann, Elke; Hochuli, Peter A.; Brühwiler, Thomas; Brinkmann, Winand; Bucher, Hugo (21 December 2012). "Climatic and biotic upheavals following the end-Permian mass extinction". Nature Geoscience . 6 (1): 57–60. doi:10.1038/ngeo1667. S2CID   129296231.
  21. Sun, Y.; Joachimski, M. M.; Wignall, P. B.; Yan, C.; Chen, Y.; Jiang, H.; Wang, L.; Lai, X. (18 October 2012). "Lethally Hot Temperatures During the Early Triassic Greenhouse". Science. 338 (6105): 366–370. Bibcode:2012Sci...338..366S. doi:10.1126/science.1224126. PMID   23087244. S2CID   41302171.
  22. Goudemand, Nicolas; Romano, Carlo; Leu, Marc; Bucher, Hugo; Trotter, Julie A.; Williams, Ian S. (August 2019). "Dynamic interplay between climate and marine biodiversity upheavals during the early Triassic Smithian -Spathian biotic crisis". Earth-Science Reviews . 195: 169–178. Bibcode:2019ESRv..195..169G. doi: 10.1016/j.earscirev.2019.01.013 .
  23. Li, Mingsong; Huang, Chunju; Hinnov, Linda; Ogg, James; Chen, Zhong-Qiang; Zhang, Yang (1 August 2016). "Obliquity-forced climate during the Early Triassic hothouse in China". Geology . 44 (8): 623–626. Bibcode:2016Geo....44..623L. doi:10.1130/G37970.1. Archived from the original on 30 August 2022. Retrieved 8 December 2022.
  24. Chen, Zhong-Qiang; Benton, Michael J. (27 May 2012). "The timing and pattern of biotic recovery following the end-Permian mass extinction". Nature Geoscience . 5 (6): 375–383. Bibcode:2012NatGe...5..375C. doi:10.1038/ngeo1475.
  25. 1 2 3 Hochuli, Peter A.; Sanson-Barrera, Anna; Schneebeli-Hermann, Elke; Bucher, Hugo (24 June 2016). "Severest crisis overlooked—Worst disruption of terrestrial environments postdates the Permian–Triassic mass extinction". Scientific Reports . 6 (1): 28372. Bibcode:2016NatSR...628372H. doi:10.1038/srep28372. PMC   4920029 . PMID   27340926.
  26. Smithwick, Fiann M.; Stubbs, Thomas L. (2 February 2018). "Phanerozoic survivors: Actinopterygian evolution through the Permo‐Triassic and Triassic‐Jurassic mass extinction events". Evolution . 72 (2): 348–362. doi: 10.1111/evo.13421 . PMC   5817399 . PMID   29315531.
  27. 1 2 3 Romano, Carlo; Koot, Martha B.; Kogan, Ilja; Brayard, Arnaud; Minikh, Alla V.; Brinkmann, Winand; Bucher, Hugo; Kriwet, Jürgen (February 2016). "Permian-Triassic Osteichthyes (bony fishes): diversity dynamics and body size evolution". Biological Reviews. 91 (1): 106–147. doi:10.1111/brv.12161. PMID   25431138. S2CID   5332637.
  28. Puttick, Mark N.; Kriwet, Jürgen; Wen, Wen; Hu, Shixue; Thomas, Gavin H.; Benton, Michael J.; Angielczyk, Kenneth (September 2017). "Body length of bony fishes was not a selective factor during the biggest mass extinction of all time". Palaeontology . 60 (5): 727–741. Bibcode:2017Palgy..60..727P. doi: 10.1111/pala.12309 . hdl: 1983/bda1adfa-7dd7-41e3-accf-a93d9d034518 .
  29. Pietsch, Carlie; Ritterbush, Kathleen A.; Thompson, Jeffrey R.; Petsios, Elizabeth; Bottjer, David J. (1 January 2019). "Evolutionary models in the Early Triassic marine realm". Palaeogeography, Palaeoclimatology, Palaeoecology . 513: 65–85. Bibcode:2019PPP...513...65P. doi:10.1016/j.palaeo.2017.12.016. S2CID   134281291. Archived from the original on 2 December 2022. Retrieved 3 December 2022.
  30. Sahney, Sarda; Benton, Michael J (15 January 2008). "Recovery from the most profound mass extinction of all time". Proceedings of the Royal Society B: Biological Sciences. 275 (1636): 759–765. doi:10.1098/rspb.2007.1370. PMC   2596898 . PMID   18198148.
  31. Dai, Xu; Davies, Joshua H.F.L.; Yuan, Zhiwei; Brayard, Arnaud; Ovtcharova, Maria; Xu, Guanghui; Liu, Xiaokang; Smith, Christopher P.A.; Schweitzer, Carrie E.; Li, Mingtao; Perrot, Morgann G.; Jiang, Shouyi; Miao, Luyi; Cao, Yiran; Yan, Jia; Bai, Ruoyu; Wang, Fengyu; Guo, Wei; Song, Huyue; Tian, Li; Dal Corso, Jacopo; Liu, Yuting; Chu, Daoliang; Song, Haijun (2023). "A Mesozoic fossil lagerstätte from 250.8 million years ago shows a modern-type marine ecosystem". Science. 379 (6632): 567–572. Bibcode:2023Sci...379..567D. doi:10.1126/science.adf1622. PMID   36758082. S2CID   256697946.
  32. Brayard, Arnaud; Krumenacker, L. J.; Botting, Joseph P.; Jenks, James F.; Bylund, Kevin G.; Fara, Emmanuel; Vennin, Emmanuelle; Olivier, Nicolas; Goudemand, Nicolas; Saucède, Thomas; Charbonnier, Sylvain; Romano, Carlo; Doguzhaeva, Larisa; Thuy, Ben; Hautmann, Michael; Stephen, Daniel A.; Thomazo, Christophe; Escarguel, Gilles (2017). "Unexpected Early Triassic marine ecosystem and the rise of the Modern evolutionary fauna". Science Advances. 3 (2): e1602159. Bibcode:2017SciA....3E2159B. doi: 10.1126/sciadv.1602159 . PMC   5310825 . PMID   28246643.
  33. Modesto, Sean P. (December 2020). "The Disaster Taxon Lystrosaurus: A Paleontological Myth". Frontiers in Earth Science. 8: 610463. Bibcode:2020FrEaS...8..617M. doi: 10.3389/feart.2020.610463 .
  34. Foth, Christian; Ezcurra, Martín D.; Sookias, Roland B.; Brusatte, Stephen L.; Butler, Richard J. (15 September 2016). "Unappreciated diversification of stem archosaurs during the Middle Triassic predated the dominance of dinosaurs". BMC Evolutionary Biology. 16 (1): 188. doi: 10.1186/s12862-016-0761-6 . PMC   5024528 . PMID   27628503.
  35. Brusatte, Stephen L.; Niedźwiedzki, Grzegorz; Butler, Richard J. (6 October 2010). "Footprints pull origin and diversification of dinosaur stem lineage deep into Early Triassic". Proceedings of the Royal Society B: Biological Sciences. 278 (1708): 1107–1113. doi: 10.1098/rspb.2010.1746 . PMC   3049033 . PMID   20926435.
  36. Żyła, Dagmara; Wegierek, Piotr; Owocki, Krzysztof; Niedźwiedzki, Grzegorz (1 February 2013). "Insects and crustaceans from the latest Early–early Middle Triassic of Poland". Palaeogeography, Palaeoclimatology, Palaeoecology . 371: 136–144. doi:10.1016/j.palaeo.2013.01.002. ISSN   0031-0182 . Retrieved 8 December 2023.
  37. Schneebeli-Hermann, Elke; Kürschner, Wolfram M.; Kerp, Hans; Bomfleur, Benjamin; Hochuli, Peter A.; Bucher, Hugo; Ware, David; Roohi, Ghazala (April 2015). "Vegetation history across the Permian–Triassic boundary in Pakistan (Amb section, Salt Range)". Gondwana Research . 27 (3): 911–924. Bibcode:2015GondR..27..911S. doi:10.1016/j.gr.2013.11.007.
  38. Xu, Zhen; Hilton, Jason; Yu, Jianxin; Wignall, Paul B.; Yin, Hongfu; Xue, Qing; Ran, Weiju; Li, Hui; Shen, Jun; Meng, Fansong (22 July 2022). "End Permian to Middle Triassic plant species richness and abundance patterns in South China: Coevolution of plants and the environment through the Permian–Triassic transition". Earth-Science Reviews. 232: 104136. Bibcode:2022ESRv..23204136X. doi:10.1016/j.earscirev.2022.104136. S2CID   251031028. Archived from the original on 28 November 2022.{{cite journal}}: CS1 maint: bot: original URL status unknown (link)
  39. 1 2 Chu, Daoliang; Tong, Jinnan; Bottjer, David J.; Song, Haijun; Song, Huyue; Benton, Michael James; Tian, Li; Guo, Wenwei (15 May 2017). "Microbial mats in the terrestrial Lower Triassic of North China and implications for the Permian–Triassic mass extinction". Palaeogeography, Palaeoclimatology, Palaeoecology . 474: 214–231. Bibcode:2017PPP...474..214C. doi:10.1016/j.palaeo.2016.06.013. hdl: 1983/95966174-157e-4814-b73f-6901ff9b9bf8 . Archived from the original on 24 December 2022. Retrieved 23 December 2022.
  40. Wignall, Paul B.; Bond, David P. G.; Grasby, Stephen E.; Pruss, Sarah B.; Peakall, Jeffrey (30 August 2019). "Controls on the formation of microbially induced sedimentary structures and biotic recovery in the Lower Triassic of Arctic Canada". Geological Society of America Bulletin . 132 (5–6): 918–930. doi: 10.1130/B35229.1 . S2CID   202194000. Archived from the original on 23 March 2023. Retrieved 22 March 2023.
  41. Ginot, Samuel; Goudemand, Nicolas (December 2020). "Global climate changes account for the main trends of conodont diversity but not for their final demise". Global and Planetary Change . 195: 103325. Bibcode:2020GPC...19503325G. doi: 10.1016/j.gloplacha.2020.103325 . S2CID   225005180.
  42. Hautmann, Michael; Ware, David; Bucher, Hugo (August 2017). "Geologically oldest oysters were epizoans on Early Triassic ammonoids". Journal of Molluscan Studies. 83 (3): 253–260. doi: 10.1093/mollus/eyx018 .
  43. Foster, William J.; Heindel, Katrin; Richoz, Sylvain; Gliwa, Jana; Lehrmann, Daniel J.; Baud, Aymon; Kolar‐Jurkovšek, Tea; Aljinović, Dunja; Jurkovšek, Bogdan; Korn, Dieter; Martindale, Rowan C.; Peckmann, Jörn (20 November 2019). "Suppressed competitive exclusion enabled the proliferation of Permian/Triassic boundary microbialites". The Depositional Record. 6 (1): 62–74. doi: 10.1002/dep2.97 . PMC   7043383 . PMID   32140241.
  44. Brayard, Arnaud; Vennin, Emmanuelle; Olivier, Nicolas; Bylund, Kevin G.; Jenks, Jim; Stephen, Daniel A.; Bucher, Hugo; Hofmann, Richard; Goudemand, Nicolas; Escarguel, Gilles (18 September 2011). "Transient metazoan reefs in the aftermath of the end-Permian mass extinction". Nature Geoscience. 4 (10): 693–697. Bibcode:2011NatGe...4..693B. doi:10.1038/ngeo1264.
  45. Brayard, A.; Escarguel, G.; Bucher, H.; Monnet, C.; Bruhwiler, T.; Goudemand, N.; Galfetti, T.; Guex, J. (27 August 2009). "Good Genes and Good Luck: Ammonoid Diversity and the End-Permian Mass Extinction". Science. 325 (5944): 1118–1121. Bibcode:2009Sci...325.1118B. doi:10.1126/science.1174638. PMID   19713525. S2CID   1287762.
  46. Romano, Carlo (January 2021). "A hiatus obscures the early evolution of Modern lineages of bony fishes". Frontiers in Earth Science. 8: 618853. doi: 10.3389/feart.2020.618853 .
  47. Cavin, L.; Argyriou, T.; Romano, C.; Grădinaru, E. (2024). "Large durophagous fish from the Spathian (late Early Triassic) of Romania hints at earlier onset of the Triassic actinopterygian revolution". Papers in Palaeontology. 10 (2). e1553. doi:10.1002/spp2.1553.
  48. Cavin, Lionel; Furrer, Heinz; Obrist, Christian (2013). "New coelacanth material from the Middle Triassic of eastern Switzerland, and comments on the taxic diversity of actinistans". Swiss Journal of Geoscience. 106 (2): 161–177. doi: 10.1007/s00015-013-0143-7 .
  49. Wendruff, A. J.; Wilson, M. V. H. (2012). "A fork-tailed coelacanth, Rebellatrix divaricerca, gen. et sp. nov. (Actinistia, Rebellatricidae, fam. nov.), from the Lower Triassic of Western Canada". Journal of Vertebrate Paleontology. 32 (3): 499–511. Bibcode:2012JVPal..32..499W. doi:10.1080/02724634.2012.657317. S2CID   85826893.
  50. Mutter, Raoul J.; Neuman, Andrew G. (2008). "New eugeneodontid sharks from the Lower Triassic Sulphur Mountain Formation of Western Canada". In Cavin, L.; Longbottom, A.; Richter, M. (eds.). Fishes and the Break-up of Pangaea. Geological Society of London, Special Publications. Vol. 295. London: Geological Society of London. pp. 9–41. doi:10.1144/sp295.3. S2CID   130268582.
  51. 1 2 Scheyer, Torsten M.; Romano, Carlo; Jenks, Jim; Bucher, Hugo (19 March 2014). "Early Triassic Marine Biotic Recovery: The Predators' Perspective". PLOS ONE. 9 (3): e88987. Bibcode:2014PLoSO...988987S. doi: 10.1371/journal.pone.0088987 . PMC   3960099 . PMID   24647136.
  52. Fröbisch, Nadia B.; Fröbisch, Jörg; Sander, P. Martin; Schmitz, Lars; Rieppel, Olivier (22 January 2013). "Macropredatory ichthyosaur from the Middle Triassic and the origin of modern trophic networks". Proceedings of the National Academy of Sciences. 110 (4): 1393–1397. Bibcode:2013PNAS..110.1393F. doi: 10.1073/pnas.1216750110 . PMC   3557033 . PMID   23297200.

Further reading